Class MaxAbsScaler

All Implemented Interfaces:
Serializable, org.apache.spark.internal.Logging, MaxAbsScalerParams, Params, HasInputCol, HasOutputCol, DefaultParamsWritable, Identifiable, MLWritable

public class MaxAbsScaler extends Estimator<MaxAbsScalerModel> implements MaxAbsScalerParams, DefaultParamsWritable
Rescale each feature individually to range [-1, 1] by dividing through the largest maximum absolute value in each feature. It does not shift/center the data, and thus does not destroy any sparsity.
See Also:
  • Constructor Details

    • MaxAbsScaler

      public MaxAbsScaler(String uid)
    • MaxAbsScaler

      public MaxAbsScaler()
  • Method Details

    • load

      public static MaxAbsScaler load(String path)
    • read

      public static MLReader<T> read()
    • outputCol

      public final Param<String> outputCol()
      Description copied from interface: HasOutputCol
      Param for output column name.
      Specified by:
      outputCol in interface HasOutputCol
      Returns:
      (undocumented)
    • inputCol

      public final Param<String> inputCol()
      Description copied from interface: HasInputCol
      Param for input column name.
      Specified by:
      inputCol in interface HasInputCol
      Returns:
      (undocumented)
    • uid

      public String uid()
      Description copied from interface: Identifiable
      An immutable unique ID for the object and its derivatives.
      Specified by:
      uid in interface Identifiable
      Returns:
      (undocumented)
    • setInputCol

      public MaxAbsScaler setInputCol(String value)
    • setOutputCol

      public MaxAbsScaler setOutputCol(String value)
    • fit

      public MaxAbsScalerModel fit(Dataset<?> dataset)
      Description copied from class: Estimator
      Fits a model to the input data.
      Specified by:
      fit in class Estimator<MaxAbsScalerModel>
      Parameters:
      dataset - (undocumented)
      Returns:
      (undocumented)
    • transformSchema

      public StructType transformSchema(StructType schema)
      Description copied from class: PipelineStage
      Check transform validity and derive the output schema from the input schema.

      We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

      Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

      Specified by:
      transformSchema in class PipelineStage
      Parameters:
      schema - (undocumented)
      Returns:
      (undocumented)
    • copy

      public MaxAbsScaler copy(ParamMap extra)
      Description copied from interface: Params
      Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().
      Specified by:
      copy in interface Params
      Specified by:
      copy in class Estimator<MaxAbsScalerModel>
      Parameters:
      extra - (undocumented)
      Returns:
      (undocumented)