Package org.apache.spark.ml.feature
Class ChiSqSelectorModel
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Transformer
org.apache.spark.ml.Model<T>
org.apache.spark.ml.feature.ChiSqSelectorModel
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,SelectorParams
,Params
,HasFeaturesCol
,HasLabelCol
,HasOutputCol
,Identifiable
,MLWritable
Model fitted by
ChiSqSelector
.- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Method Summary
Modifier and TypeMethodDescriptionstatic scala.Tuple2<int[],
double[]> compressSparse
(int[] indices, double[] values, int[] selectedFeatures) Creates a copy of this instance with the same UID and some extra params.final DoubleParam
fdr()
The upper bound of the expected false discovery rate.Param for features column name.final DoubleParam
fpr()
The highest p-value for features to be kept.final DoubleParam
fwe()
The upper bound of the expected family-wise error rate.labelCol()
Param for label column name.static ChiSqSelectorModel
final IntParam
Number of features that selector will select, ordered by ascending p-value.Param for output column name.final DoubleParam
Percentile of features that selector will select, ordered by ascending p-value.static StructField
prepOutputField
(StructType schema, int[] selectedFeatures, String outputCol, String featuresCol, boolean isNumericAttribute) Prepare the output column field, including per-feature metadata.static MLReader<ChiSqSelectorModel>
read()
int[]
The selector type.setFeaturesCol
(String value) setOutputCol
(String value) toString()
Transforms the input dataset.transformSchema
(StructType schema) Check transform validity and derive the output schema from the input schema.uid()
An immutable unique ID for the object and its derivatives.write()
Returns anMLWriter
instance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transform
Methods inherited from class org.apache.spark.ml.PipelineStage
params
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasLabelCol
getLabelCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasOutputCol
getOutputCol
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContext
Methods inherited from interface org.apache.spark.ml.util.MLWritable
save
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
Methods inherited from interface org.apache.spark.ml.feature.SelectorParams
getFdr, getFpr, getFwe, getNumTopFeatures, getPercentile, getSelectorType
-
Method Details
-
read
-
load
-
uid
Description copied from interface:Identifiable
An immutable unique ID for the object and its derivatives.- Specified by:
uid
in interfaceIdentifiable
- Returns:
- (undocumented)
-
selectedFeatures
public int[] selectedFeatures() -
setFeaturesCol
-
setOutputCol
-
transformSchema
Description copied from class:PipelineStage
Check transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Parameters:
schema
- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:Params
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy()
.- Specified by:
copy
in interfaceParams
- Specified by:
copy
in classModel<ChiSqSelectorModel>
- Parameters:
extra
- (undocumented)- Returns:
- (undocumented)
-
write
Description copied from interface:MLWritable
Returns anMLWriter
instance for this ML instance.- Returns:
- (undocumented)
-
toString
- Specified by:
toString
in interfaceIdentifiable
- Overrides:
toString
in classObject
-
prepOutputField
public static StructField prepOutputField(StructType schema, int[] selectedFeatures, String outputCol, String featuresCol, boolean isNumericAttribute) Prepare the output column field, including per-feature metadata.- Parameters:
schema
- (undocumented)selectedFeatures
- (undocumented)outputCol
- (undocumented)featuresCol
- (undocumented)isNumericAttribute
- (undocumented)- Returns:
- (undocumented)
-
compressSparse
public static scala.Tuple2<int[],double[]> compressSparse(int[] indices, double[] values, int[] selectedFeatures) -
numTopFeatures
Description copied from interface:SelectorParams
Number of features that selector will select, ordered by ascending p-value. If the number of features is less than numTopFeatures, then this will select all features. Only applicable when selectorType = "numTopFeatures". The default value of numTopFeatures is 50.- Specified by:
numTopFeatures
in interfaceSelectorParams
- Returns:
- (undocumented)
-
percentile
Description copied from interface:SelectorParams
Percentile of features that selector will select, ordered by ascending p-value. Only applicable when selectorType = "percentile". Default value is 0.1.- Specified by:
percentile
in interfaceSelectorParams
- Returns:
- (undocumented)
-
fpr
Description copied from interface:SelectorParams
The highest p-value for features to be kept. Only applicable when selectorType = "fpr". Default value is 0.05.- Specified by:
fpr
in interfaceSelectorParams
- Returns:
- (undocumented)
-
fdr
Description copied from interface:SelectorParams
The upper bound of the expected false discovery rate. Only applicable when selectorType = "fdr". Default value is 0.05.- Specified by:
fdr
in interfaceSelectorParams
- Returns:
- (undocumented)
-
fwe
Description copied from interface:SelectorParams
The upper bound of the expected family-wise error rate. Only applicable when selectorType = "fwe". Default value is 0.05.- Specified by:
fwe
in interfaceSelectorParams
- Returns:
- (undocumented)
-
selectorType
Description copied from interface:SelectorParams
The selector type. Supported options: "numTopFeatures" (default), "percentile", "fpr", "fdr", "fwe"- Specified by:
selectorType
in interfaceSelectorParams
- Returns:
- (undocumented)
-
outputCol
Description copied from interface:HasOutputCol
Param for output column name.- Specified by:
outputCol
in interfaceHasOutputCol
- Returns:
- (undocumented)
-
labelCol
Description copied from interface:HasLabelCol
Param for label column name.- Specified by:
labelCol
in interfaceHasLabelCol
- Returns:
- (undocumented)
-
featuresCol
Description copied from interface:HasFeaturesCol
Param for features column name.- Specified by:
featuresCol
in interfaceHasFeaturesCol
- Returns:
- (undocumented)
-
transform
Description copied from class:Transformer
Transforms the input dataset.- Specified by:
transform
in classTransformer
- Parameters:
dataset
- (undocumented)- Returns:
- (undocumented)
-