Class BoostingStrategy
- All Implemented Interfaces:
Serializable
,scala.Equals
,scala.Product
GradientBoostedTrees
.
param: treeStrategy Parameters for the tree algorithm. We support regression and binary
classification for boosting. Impurity setting will be ignored.
param: loss Loss function used for minimization during gradient boosting.
param: numIterations Number of iterations of boosting. In other words, the number of
weak hypotheses used in the final model.
param: learningRate Learning rate for shrinking the contribution of each estimator. The
learning rate should be between in the interval (0, 1]
param: validationTol validationTol is a condition which decides iteration termination when
runWithValidation is used.
The end of iteration is decided based on below logic:
If the current loss on the validation set is greater than 0.01, the diff
of validation error is compared to relative tolerance which is
validationTol * (current loss on the validation set).
If the current loss on the validation set is less than or equal to 0.01,
the diff of validation error is compared to absolute tolerance which is
validationTol * 0.01.
Ignored when
org.apache.spark.mllib.tree.GradientBoostedTrees.run()
is used.
- See Also:
-
Constructor Summary
ConstructorDescriptionBoostingStrategy
(Strategy treeStrategy, Loss loss, int numIterations, double learningRate, double validationTol) -
Method Summary
Modifier and TypeMethodDescriptionstatic BoostingStrategy
defaultParams
(String algo) Returns default configuration for the boosting algorithmstatic BoostingStrategy
defaultParams
(scala.Enumeration.Value algo) Returns default configuration for the boosting algorithmdouble
getLoss()
int
double
double
loss()
int
void
setLearningRate
(double x$1) void
void
setNumIterations
(int x$1) void
setTreeStrategy
(Strategy x$1) void
setValidationTol
(double x$1) double
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface scala.Equals
canEqual, equals
Methods inherited from interface scala.Product
productArity, productElement, productElementName, productElementNames, productIterator, productPrefix
-
Constructor Details
-
BoostingStrategy
-
-
Method Details
-
defaultParams
Returns default configuration for the boosting algorithm- Parameters:
algo
- Learning goal. Supported: "Classification" or "Regression"- Returns:
- Configuration for boosting algorithm
-
defaultParams
Returns default configuration for the boosting algorithm- Parameters:
algo
- Learning goal. Supported:org.apache.spark.mllib.tree.configuration.Algo.Classification
,org.apache.spark.mllib.tree.configuration.Algo.Regression
- Returns:
- Configuration for boosting algorithm
-
treeStrategy
-
loss
-
numIterations
public int numIterations() -
learningRate
public double learningRate() -
validationTol
public double validationTol() -
getLearningRate
public double getLearningRate() -
getLoss
-
getNumIterations
public int getNumIterations() -
getTreeStrategy
-
getValidationTol
public double getValidationTol() -
setLearningRate
public void setLearningRate(double x$1) -
setLoss
-
setNumIterations
public void setNumIterations(int x$1) -
setTreeStrategy
-
setValidationTol
public void setValidationTol(double x$1)
-