RFormula#
- class pyspark.ml.feature.RFormula(*, formula=None, featuresCol='features', labelCol='label', forceIndexLabel=False, stringIndexerOrderType='frequencyDesc', handleInvalid='error')[source]#
- Implements the transforms required for fitting a dataset against an R model formula. Currently we support a limited subset of the R operators, including ‘~’, ‘.’, ‘:’, ‘+’, ‘-’, ‘*’, and ‘^’. - New in version 1.5.0. - Notes - Also see the R formula docs. - Examples - >>> df = spark.createDataFrame([ ... (1.0, 1.0, "a"), ... (0.0, 2.0, "b"), ... (0.0, 0.0, "a") ... ], ["y", "x", "s"]) >>> rf = RFormula(formula="y ~ x + s") >>> model = rf.fit(df) >>> model.getLabelCol() 'label' >>> model.transform(df).show() +---+---+---+---------+-----+ | y| x| s| features|label| +---+---+---+---------+-----+ |1.0|1.0| a|[1.0,1.0]| 1.0| |0.0|2.0| b|[2.0,0.0]| 0.0| |0.0|0.0| a|[0.0,1.0]| 0.0| +---+---+---+---------+-----+ ... >>> rf.fit(df, {rf.formula: "y ~ . - s"}).transform(df).show() +---+---+---+--------+-----+ | y| x| s|features|label| +---+---+---+--------+-----+ |1.0|1.0| a| [1.0]| 1.0| |0.0|2.0| b| [2.0]| 0.0| |0.0|0.0| a| [0.0]| 0.0| +---+---+---+--------+-----+ ... >>> rFormulaPath = temp_path + "/rFormula" >>> rf.save(rFormulaPath) >>> loadedRF = RFormula.load(rFormulaPath) >>> loadedRF.getFormula() == rf.getFormula() True >>> loadedRF.getFeaturesCol() == rf.getFeaturesCol() True >>> loadedRF.getLabelCol() == rf.getLabelCol() True >>> loadedRF.getHandleInvalid() == rf.getHandleInvalid() True >>> str(loadedRF) 'RFormula(y ~ x + s) (uid=...)' >>> modelPath = temp_path + "/rFormulaModel" >>> model.save(modelPath) >>> loadedModel = RFormulaModel.load(modelPath) >>> loadedModel.uid == model.uid True >>> loadedModel.transform(df).show() +---+---+---+---------+-----+ | y| x| s| features|label| +---+---+---+---------+-----+ |1.0|1.0| a|[1.0,1.0]| 1.0| |0.0|2.0| b|[2.0,0.0]| 0.0| |0.0|0.0| a|[0.0,1.0]| 0.0| +---+---+---+---------+-----+ ... >>> str(loadedModel) 'RFormulaModel(ResolvedRFormula(label=y, terms=[x,s], hasIntercept=true)) (uid=...)' - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - Gets the value of featuresCol or its default value. - Gets the value of - forceIndexLabel.- Gets the value of - formula.- Gets the value of handleInvalid or its default value. - Gets the value of labelCol or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of - stringIndexerOrderTypeor its default value 'frequencyDesc'.- hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of 'write().save(path)'. - set(param, value)- Sets a parameter in the embedded param map. - setFeaturesCol(value)- Sets the value of - featuresCol.- setForceIndexLabel(value)- Sets the value of - forceIndexLabel.- setFormula(value)- Sets the value of - formula.- setHandleInvalid(value)- Sets the value of - handleInvalid.- setLabelCol(value)- Sets the value of - labelCol.- setParams(self, \*[, formula, featuresCol, ...])- Sets params for RFormula. - setStringIndexerOrderType(value)- Sets the value of - stringIndexerOrderType.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - clear(param)#
- Clears a param from the param map if it has been explicitly set. 
 - copy(extra=None)#
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - explainParam(param)#
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - explainParams()#
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - extractParamMap(extra=None)#
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - fit(dataset, params=None)#
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- Transformeror a list of- Transformer
- fitted model(s) 
 
 
 - fitMultiple(dataset, paramMaps)#
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - getFeaturesCol()#
- Gets the value of featuresCol or its default value. 
 - getForceIndexLabel()#
- Gets the value of - forceIndexLabel.- New in version 2.1.0. 
 - getHandleInvalid()#
- Gets the value of handleInvalid or its default value. 
 - getLabelCol()#
- Gets the value of labelCol or its default value. 
 - getOrDefault(param)#
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - getParam(paramName)#
- Gets a param by its name. 
 - getStringIndexerOrderType()#
- Gets the value of - stringIndexerOrderTypeor its default value ‘frequencyDesc’.- New in version 2.3.0. 
 - hasDefault(param)#
- Checks whether a param has a default value. 
 - hasParam(paramName)#
- Tests whether this instance contains a param with a given (string) name. 
 - isDefined(param)#
- Checks whether a param is explicitly set by user or has a default value. 
 - isSet(param)#
- Checks whether a param is explicitly set by user. 
 - classmethod load(path)#
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - classmethod read()#
- Returns an MLReader instance for this class. 
 - save(path)#
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - set(param, value)#
- Sets a parameter in the embedded param map. 
 - setFeaturesCol(value)[source]#
- Sets the value of - featuresCol.
 - setForceIndexLabel(value)[source]#
- Sets the value of - forceIndexLabel.- New in version 2.1.0. 
 - setHandleInvalid(value)[source]#
- Sets the value of - handleInvalid.
 - setParams(self, \*, formula=None, featuresCol="features", labelCol="label", forceIndexLabel=False, stringIndexerOrderType="frequencyDesc", handleInvalid="error")[source]#
- Sets params for RFormula. - New in version 1.5.0. 
 - setStringIndexerOrderType(value)[source]#
- Sets the value of - stringIndexerOrderType.- New in version 2.3.0. 
 - write()#
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - featuresCol = Param(parent='undefined', name='featuresCol', doc='features column name.')#
 - forceIndexLabel = Param(parent='undefined', name='forceIndexLabel', doc='Force to index label whether it is numeric or string')#
 - formula = Param(parent='undefined', name='formula', doc='R model formula')#
 - handleInvalid = Param(parent='undefined', name='handleInvalid', doc="how to handle invalid entries. Options are 'skip' (filter out rows with invalid values), 'error' (throw an error), or 'keep' (put invalid data in a special additional bucket, at index numLabels).")#
 - labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')#
 - params#
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - stringIndexerOrderType = Param(parent='undefined', name='stringIndexerOrderType', doc='How to order categories of a string feature column used by StringIndexer. The last category after ordering is dropped when encoding strings. Supported options: frequencyDesc, frequencyAsc, alphabetDesc, alphabetAsc. The default value is frequencyDesc. When the ordering is set to alphabetDesc, RFormula drops the same category as R when encoding strings.')#
 - uid#
- A unique id for the object.