pyspark.pandas.DataFrame.reindex#
- DataFrame.reindex(labels=None, index=None, columns=None, axis=None, copy=True, fill_value=None)[source]#
Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and
copy=False
.- Parameters
- labels: array-like, optional
New labels / index to conform the axis specified by ‘axis’ to.
- index, columns: array-like, optional
New labels / index to conform to, should be specified using keywords. Preferably an Index object to avoid duplicating data
- axis: int or str, optional
Axis to target. Can be either the axis name (‘index’, ‘columns’) or number (0, 1).
- copybool, default True
Return a new object, even if the passed indexes are the same.
- fill_valuescalar, default np.nan
Value to use for missing values. Defaults to NaN, but can be any “compatible” value.
- Returns
- DataFrame with changed index.
See also
DataFrame.set_index
Set row labels.
DataFrame.reset_index
Remove row labels or move them to new columns.
Examples
DataFrame.reindex
supports two calling conventions(index=index_labels, columns=column_labels, ...)
(labels, axis={'index', 'columns'}, ...)
We highly recommend using keyword arguments to clarify your intent.
Create a dataframe with some fictional data.
>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> df = ps.DataFrame({ ... 'http_status': [200, 200, 404, 404, 301], ... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]}, ... index=index, ... columns=['http_status', 'response_time']) >>> df http_status response_time Firefox 200 0.04 Chrome 200 0.02 Safari 404 0.07 IE10 404 0.08 Konqueror 301 1.00
Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned
NaN
.>>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> df.reindex(new_index).sort_index() http_status response_time Chrome 200.0 0.02 Comodo Dragon NaN NaN IE10 404.0 0.08 Iceweasel NaN NaN Safari 404.0 0.07
We can fill in the missing values by passing a value to the keyword
fill_value
.>>> df.reindex(new_index, fill_value=0, copy=False).sort_index() http_status response_time Chrome 200 0.02 Comodo Dragon 0 0.00 IE10 404 0.08 Iceweasel 0 0.00 Safari 404 0.07
We can also reindex the columns.
>>> df.reindex(columns=['http_status', 'user_agent']).sort_index() http_status user_agent Chrome 200 NaN Firefox 200 NaN IE10 404 NaN Konqueror 301 NaN Safari 404 NaN
Or we can use “axis-style” keyword arguments
>>> df.reindex(['http_status', 'user_agent'], axis="columns").sort_index() http_status user_agent Chrome 200 NaN Firefox 200 NaN IE10 404 NaN Konqueror 301 NaN Safari 404 NaN
To further illustrate the filling functionality in
reindex
, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates).>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D') >>> df2 = ps.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]}, ... index=date_index) >>> df2.sort_index() prices 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0
Suppose we decide to expand the dataframe to cover a wider date range.
>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D') >>> df2.reindex(date_index2).sort_index() prices 2009-12-29 NaN 2009-12-30 NaN 2009-12-31 NaN 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN