pyspark.sql.Column.transform#
- Column.transform(f)[source]#
- Applies a transformation function to this column. - This method allows you to apply a function that takes a Column and returns a Column, enabling method chaining and functional transformations. - New in version 4.1.0. - Parameters
- Returns
- Column
- The result of applying the function to this column. 
 
 - Examples - Example 1: Chain built-in functions - >>> from pyspark.sql.functions import trim, upper >>> df = spark.createDataFrame([(" hello ",), (" world ",)], ["text"]) >>> df.select(df.text.transform(trim).transform(upper).alias("result")).show() +------+ |result| +------+ | HELLO| | WORLD| +------+ - Example 2: Use lambda functions - >>> df = spark.createDataFrame([(10,), (20,), (30,)], ["value"]) >>> df.select( ... df.value.transform(lambda c: c + 5) ... .transform(lambda c: c * 2) ... .transform(lambda c: c - 10).alias("result") ... ).show() +------+ |result| +------+ | 20| | 40| | 60| +------+