MultilayerPerceptronClassificationModel#
- class pyspark.ml.classification.MultilayerPerceptronClassificationModel(java_model=None)[source]#
- Model fitted by MultilayerPerceptronClassifier. - New in version 1.6.0. - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - evaluate(dataset)- Evaluates the model on a test dataset. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Gets the value of blockSize or its default value. - Gets the value of featuresCol or its default value. - Gets the value of initialWeights or its default value. - Gets the value of labelCol or its default value. - Gets the value of layers or its default value. - Gets the value of maxIter or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of predictionCol or its default value. - Gets the value of probabilityCol or its default value. - Gets the value of rawPredictionCol or its default value. - getSeed()- Gets the value of seed or its default value. - Gets the value of solver or its default value. - Gets the value of stepSize or its default value. - Gets the value of thresholds or its default value. - getTol()- Gets the value of tol or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - predict(value)- Predict label for the given features. - predictProbability(value)- Predict the probability of each class given the features. - predictRaw(value)- Raw prediction for each possible label. - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of 'write().save(path)'. - set(param, value)- Sets a parameter in the embedded param map. - setFeaturesCol(value)- Sets the value of - featuresCol.- setPredictionCol(value)- Sets the value of - predictionCol.- setProbabilityCol(value)- Sets the value of - probabilityCol.- setRawPredictionCol(value)- Sets the value of - rawPredictionCol.- setThresholds(value)- Sets the value of - thresholds.- summary()- Gets summary (accuracy/precision/recall, objective history, total iterations) of model trained on the training set. - transform(dataset[, params])- Transforms the input dataset with optional parameters. - write()- Returns an MLWriter instance for this ML instance. - Attributes - Indicates whether a training summary exists for this model instance. - Number of classes (values which the label can take). - Returns the number of features the model was trained on. - Returns all params ordered by name. - the weights of layers. - Methods Documentation - clear(param)#
- Clears a param from the param map if it has been explicitly set. 
 - copy(extra=None)#
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - evaluate(dataset)[source]#
- Evaluates the model on a test dataset. - New in version 3.1.0. - Parameters
- datasetpyspark.sql.DataFrame
- Test dataset to evaluate model on. 
 
- dataset
 
 - explainParam(param)#
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - explainParams()#
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - extractParamMap(extra=None)#
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - getBlockSize()#
- Gets the value of blockSize or its default value. 
 - getFeaturesCol()#
- Gets the value of featuresCol or its default value. 
 - getInitialWeights()#
- Gets the value of initialWeights or its default value. - New in version 2.0.0. 
 - getLabelCol()#
- Gets the value of labelCol or its default value. 
 - getLayers()#
- Gets the value of layers or its default value. - New in version 1.6.0. 
 - getMaxIter()#
- Gets the value of maxIter or its default value. 
 - getOrDefault(param)#
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - getParam(paramName)#
- Gets a param by its name. 
 - getPredictionCol()#
- Gets the value of predictionCol or its default value. 
 - getProbabilityCol()#
- Gets the value of probabilityCol or its default value. 
 - getRawPredictionCol()#
- Gets the value of rawPredictionCol or its default value. 
 - getSeed()#
- Gets the value of seed or its default value. 
 - getSolver()#
- Gets the value of solver or its default value. 
 - getStepSize()#
- Gets the value of stepSize or its default value. 
 - getThresholds()#
- Gets the value of thresholds or its default value. 
 - getTol()#
- Gets the value of tol or its default value. 
 - hasDefault(param)#
- Checks whether a param has a default value. 
 - hasParam(paramName)#
- Tests whether this instance contains a param with a given (string) name. 
 - isDefined(param)#
- Checks whether a param is explicitly set by user or has a default value. 
 - isSet(param)#
- Checks whether a param is explicitly set by user. 
 - classmethod load(path)#
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - predict(value)#
- Predict label for the given features. - New in version 3.0.0. 
 - predictProbability(value)#
- Predict the probability of each class given the features. - New in version 3.0.0. 
 - predictRaw(value)#
- Raw prediction for each possible label. - New in version 3.0.0. 
 - classmethod read()#
- Returns an MLReader instance for this class. 
 - save(path)#
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - set(param, value)#
- Sets a parameter in the embedded param map. 
 - setFeaturesCol(value)#
- Sets the value of - featuresCol.- New in version 3.0.0. 
 - setPredictionCol(value)#
- Sets the value of - predictionCol.- New in version 3.0.0. 
 - setProbabilityCol(value)#
- Sets the value of - probabilityCol.- New in version 3.0.0. 
 - setRawPredictionCol(value)#
- Sets the value of - rawPredictionCol.- New in version 3.0.0. 
 - setThresholds(value)#
- Sets the value of - thresholds.- New in version 3.0.0. 
 - summary()[source]#
- Gets summary (accuracy/precision/recall, objective history, total iterations) of model trained on the training set. An exception is thrown if trainingSummary is None. - New in version 3.1.0. 
 - transform(dataset, params=None)#
- Transforms the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset 
- paramsdict, optional
- an optional param map that overrides embedded params. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- transformed dataset 
 
 
 - write()#
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - blockSize = Param(parent='undefined', name='blockSize', doc='block size for stacking input data in matrices. Data is stacked within partitions. If block size is more than remaining data in a partition then it is adjusted to the size of this data.')#
 - featuresCol = Param(parent='undefined', name='featuresCol', doc='features column name.')#
 - hasSummary#
- Indicates whether a training summary exists for this model instance. - New in version 2.1.0. 
 - initialWeights = Param(parent='undefined', name='initialWeights', doc='The initial weights of the model.')#
 - labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')#
 - layers = Param(parent='undefined', name='layers', doc='Sizes of layers from input layer to output layer E.g., Array(780, 100, 10) means 780 inputs, one hidden layer with 100 neurons and output layer of 10 neurons.')#
 - maxIter = Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')#
 - numClasses#
- Number of classes (values which the label can take). - New in version 2.1.0. 
 - numFeatures#
- Returns the number of features the model was trained on. If unknown, returns -1 - New in version 2.1.0. 
 - params#
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - predictionCol = Param(parent='undefined', name='predictionCol', doc='prediction column name.')#
 - probabilityCol = Param(parent='undefined', name='probabilityCol', doc='Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.')#
 - rawPredictionCol = Param(parent='undefined', name='rawPredictionCol', doc='raw prediction (a.k.a. confidence) column name.')#
 - seed = Param(parent='undefined', name='seed', doc='random seed.')#
 - solver = Param(parent='undefined', name='solver', doc='The solver algorithm for optimization. Supported options: l-bfgs, gd.')#
 - stepSize = Param(parent='undefined', name='stepSize', doc='Step size to be used for each iteration of optimization (>= 0).')#
 - thresholds = Param(parent='undefined', name='thresholds', doc="Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0, excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.")#
 - tol = Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')#
 - weights#
- the weights of layers. - New in version 2.0.0. 
 - uid#
- A unique id for the object.