GeneralizedLinearRegressionModel#
- class pyspark.ml.regression.GeneralizedLinearRegressionModel(java_model=None)[source]#
- Model fitted by - GeneralizedLinearRegression.- New in version 2.0.0. - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - evaluate(dataset)- Evaluates the model on a test dataset. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Gets the value of aggregationDepth or its default value. - Gets the value of family or its default value. - Gets the value of featuresCol or its default value. - Gets the value of fitIntercept or its default value. - Gets the value of labelCol or its default value. - getLink()- Gets the value of link or its default value. - Gets the value of linkPower or its default value. - Gets the value of linkPredictionCol or its default value. - Gets the value of maxIter or its default value. - Gets the value of offsetCol or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of predictionCol or its default value. - Gets the value of regParam or its default value. - Gets the value of solver or its default value. - getTol()- Gets the value of tol or its default value. - Gets the value of variancePower or its default value. - Gets the value of weightCol or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - predict(value)- Predict label for the given features. - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of 'write().save(path)'. - set(param, value)- Sets a parameter in the embedded param map. - setFeaturesCol(value)- Sets the value of - featuresCol.- setLinkPredictionCol(value)- Sets the value of - linkPredictionCol.- setPredictionCol(value)- Sets the value of - predictionCol.- transform(dataset[, params])- Transforms the input dataset with optional parameters. - write()- Returns an MLWriter instance for this ML instance. - Attributes - Model coefficients. - Indicates whether a training summary exists for this model instance. - Model intercept. - Returns the number of features the model was trained on. - Returns all params ordered by name. - Gets summary of the model trained on the training set. - Methods Documentation - clear(param)#
- Clears a param from the param map if it has been explicitly set. 
 - copy(extra=None)#
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - evaluate(dataset)[source]#
- Evaluates the model on a test dataset. - New in version 2.0.0. - Parameters
- datasetpyspark.sql.DataFrame
- Test dataset to evaluate model on, where dataset is an instance of - pyspark.sql.DataFrame
 
- dataset
 
 - explainParam(param)#
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - explainParams()#
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - extractParamMap(extra=None)#
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - getAggregationDepth()#
- Gets the value of aggregationDepth or its default value. 
 - getFamily()#
- Gets the value of family or its default value. - New in version 2.0.0. 
 - getFeaturesCol()#
- Gets the value of featuresCol or its default value. 
 - getFitIntercept()#
- Gets the value of fitIntercept or its default value. 
 - getLabelCol()#
- Gets the value of labelCol or its default value. 
 - getLink()#
- Gets the value of link or its default value. - New in version 2.0.0. 
 - getLinkPower()#
- Gets the value of linkPower or its default value. - New in version 2.2.0. 
 - getLinkPredictionCol()#
- Gets the value of linkPredictionCol or its default value. - New in version 2.0.0. 
 - getMaxIter()#
- Gets the value of maxIter or its default value. 
 - getOffsetCol()#
- Gets the value of offsetCol or its default value. - New in version 2.3.0. 
 - getOrDefault(param)#
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - getParam(paramName)#
- Gets a param by its name. 
 - getPredictionCol()#
- Gets the value of predictionCol or its default value. 
 - getRegParam()#
- Gets the value of regParam or its default value. 
 - getSolver()#
- Gets the value of solver or its default value. 
 - getTol()#
- Gets the value of tol or its default value. 
 - getVariancePower()#
- Gets the value of variancePower or its default value. - New in version 2.2.0. 
 - getWeightCol()#
- Gets the value of weightCol or its default value. 
 - hasDefault(param)#
- Checks whether a param has a default value. 
 - hasParam(paramName)#
- Tests whether this instance contains a param with a given (string) name. 
 - isDefined(param)#
- Checks whether a param is explicitly set by user or has a default value. 
 - isSet(param)#
- Checks whether a param is explicitly set by user. 
 - classmethod load(path)#
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - predict(value)#
- Predict label for the given features. - New in version 3.0.0. 
 - classmethod read()#
- Returns an MLReader instance for this class. 
 - save(path)#
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - set(param, value)#
- Sets a parameter in the embedded param map. 
 - setFeaturesCol(value)#
- Sets the value of - featuresCol.- New in version 3.0.0. 
 - setLinkPredictionCol(value)[source]#
- Sets the value of - linkPredictionCol.- New in version 3.0.0. 
 - setPredictionCol(value)#
- Sets the value of - predictionCol.- New in version 3.0.0. 
 - transform(dataset, params=None)#
- Transforms the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset 
- paramsdict, optional
- an optional param map that overrides embedded params. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- transformed dataset 
 
 
 - write()#
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - aggregationDepth = Param(parent='undefined', name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).')#
 - coefficients#
- Model coefficients. - New in version 2.0.0. 
 - family = Param(parent='undefined', name='family', doc='The name of family which is a description of the error distribution to be used in the model. Supported options: gaussian (default), binomial, poisson, gamma and tweedie.')#
 - featuresCol = Param(parent='undefined', name='featuresCol', doc='features column name.')#
 - fitIntercept = Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')#
 - hasSummary#
- Indicates whether a training summary exists for this model instance. - New in version 2.1.0. 
 - intercept#
- Model intercept. - New in version 2.0.0. 
 - labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')#
 - link = Param(parent='undefined', name='link', doc='The name of link function which provides the relationship between the linear predictor and the mean of the distribution function. Supported options: identity, log, inverse, logit, probit, cloglog and sqrt.')#
 - linkPower = Param(parent='undefined', name='linkPower', doc='The index in the power link function. Only applicable to the Tweedie family.')#
 - linkPredictionCol = Param(parent='undefined', name='linkPredictionCol', doc='link prediction (linear predictor) column name')#
 - maxIter = Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')#
 - numFeatures#
- Returns the number of features the model was trained on. If unknown, returns -1 - New in version 2.1.0. 
 - offsetCol = Param(parent='undefined', name='offsetCol', doc='The offset column name. If this is not set or empty, we treat all instance offsets as 0.0')#
 - params#
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - predictionCol = Param(parent='undefined', name='predictionCol', doc='prediction column name.')#
 - regParam = Param(parent='undefined', name='regParam', doc='regularization parameter (>= 0).')#
 - solver = Param(parent='undefined', name='solver', doc='The solver algorithm for optimization. Supported options: irls.')#
 - summary#
- Gets summary of the model trained on the training set. An exception is thrown if no summary exists. - New in version 2.1.0. 
 - tol = Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')#
 - variancePower = Param(parent='undefined', name='variancePower', doc='The power in the variance function of the Tweedie distribution which characterizes the relationship between the variance and mean of the distribution. Only applicable for the Tweedie family. Supported values: 0 and [1, Inf).')#
 - weightCol = Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')#
 - uid#
- A unique id for the object.