pyspark.sql.DataFrame.sortWithinPartitions#
- DataFrame.sortWithinPartitions(*cols, **kwargs)[source]#
- Returns a new - DataFramewith each partition sorted by the specified column(s).- New in version 1.6.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- Returns
- DataFrame
- DataFrame sorted by partitions. 
 
- Other Parameters
- ascendingbool or list, optional, default True
- boolean or list of boolean. Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, the length of the list must equal the length of the cols. 
 
 - Notes - A column ordinal starts from 1, which is different from the 0-based - __getitem__(). If a column ordinal is negative, it means sort descending.- Examples - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.sortWithinPartitions("age", ascending=False) DataFrame[age: bigint, name: string] - >>> df.coalesce(1).sortWithinPartitions(1).show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ - >>> df.coalesce(1).sortWithinPartitions(-1).show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 2|Alice| +---+-----+