DenseVector#
- class pyspark.mllib.linalg.DenseVector(ar)[source]#
- A dense vector represented by a value array. We use numpy array for storage and arithmetics will be delegated to the underlying numpy array. - Examples - >>> v = Vectors.dense([1.0, 2.0]) >>> u = Vectors.dense([3.0, 4.0]) >>> v + u DenseVector([4.0, 6.0]) >>> 2 - v DenseVector([1.0, 0.0]) >>> v / 2 DenseVector([0.5, 1.0]) >>> v * u DenseVector([3.0, 8.0]) >>> u / v DenseVector([3.0, 2.0]) >>> u % 2 DenseVector([1.0, 0.0]) >>> -v DenseVector([-1.0, -2.0]) - Methods - asML()- Convert this vector to the new mllib-local representation. - dot(other)- Compute the dot product of two Vectors. - norm(p)- Calculates the norm of a DenseVector. - Number of nonzero elements. - parse(s)- Parse string representation back into the DenseVector. - squared_distance(other)- Squared distance of two Vectors. - toArray()- Returns an numpy.ndarray - Attributes - Returns a list of values - Methods Documentation - asML()[source]#
- Convert this vector to the new mllib-local representation. This does NOT copy the data; it copies references. - New in version 2.0.0. - Returns
 
 - dot(other)[source]#
- Compute the dot product of two Vectors. We support (Numpy array, list, SparseVector, or SciPy sparse) and a target NumPy array that is either 1- or 2-dimensional. Equivalent to calling numpy.dot of the two vectors. - Examples - >>> dense = DenseVector(array.array('d', [1., 2.])) >>> dense.dot(dense) 5.0 >>> dense.dot(SparseVector(2, [0, 1], [2., 1.])) 4.0 >>> dense.dot(range(1, 3)) 5.0 >>> dense.dot(np.array(range(1, 3))) 5.0 >>> dense.dot([1.,]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> dense.dot(np.reshape([1., 2., 3., 4.], (2, 2), order='F')) array([ 5., 11.]) >>> dense.dot(np.reshape([1., 2., 3.], (3, 1), order='F')) Traceback (most recent call last): ... AssertionError: dimension mismatch 
 - norm(p)[source]#
- Calculates the norm of a DenseVector. - Examples - >>> a = DenseVector([0, -1, 2, -3]) >>> a.norm(2) 3.7... >>> a.norm(1) 6.0 
 - static parse(s)[source]#
- Parse string representation back into the DenseVector. - Examples - >>> DenseVector.parse(' [ 0.0,1.0,2.0, 3.0]') DenseVector([0.0, 1.0, 2.0, 3.0]) 
 - squared_distance(other)[source]#
- Squared distance of two Vectors. - Examples - >>> dense1 = DenseVector(array.array('d', [1., 2.])) >>> dense1.squared_distance(dense1) 0.0 >>> dense2 = np.array([2., 1.]) >>> dense1.squared_distance(dense2) 2.0 >>> dense3 = [2., 1.] >>> dense1.squared_distance(dense3) 2.0 >>> sparse1 = SparseVector(2, [0, 1], [2., 1.]) >>> dense1.squared_distance(sparse1) 2.0 >>> dense1.squared_distance([1.,]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> dense1.squared_distance(SparseVector(1, [0,], [1.,])) Traceback (most recent call last): ... AssertionError: dimension mismatch 
 - Attributes Documentation - values#
- Returns a list of values