public class CountVectorizerModel extends Model<CountVectorizerModel> implements CountVectorizerParams, MLWritable
Constructor and Description |
---|
CountVectorizerModel(String[] vocabulary) |
CountVectorizerModel(String uid,
String[] vocabulary) |
Modifier and Type | Method and Description |
---|---|
BooleanParam |
binary()
Binary toggle to control the output vector values.
|
CountVectorizerModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
inputCol()
Param for input column name.
|
static CountVectorizerModel |
load(String path) |
DoubleParam |
maxDF()
Specifies the maximum number of different documents a term could appear in to be included
in the vocabulary.
|
DoubleParam |
minDF()
Specifies the minimum number of different documents a term must appear in to be included
in the vocabulary.
|
DoubleParam |
minTF()
Filter to ignore rare words in a document.
|
Param<String> |
outputCol()
Param for output column name.
|
static MLReader<CountVectorizerModel> |
read() |
CountVectorizerModel |
setBinary(boolean value) |
CountVectorizerModel |
setInputCol(String value) |
CountVectorizerModel |
setMinTF(double value) |
CountVectorizerModel |
setOutputCol(String value) |
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
IntParam |
vocabSize()
Max size of the vocabulary.
|
String[] |
vocabulary() |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
params
getBinary, getMaxDF, getMinDF, getMinTF, getVocabSize, validateAndTransformSchema
getInputCol
getOutputCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
save
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
public CountVectorizerModel(String uid, String[] vocabulary)
public CountVectorizerModel(String[] vocabulary)
public static MLReader<CountVectorizerModel> read()
public static CountVectorizerModel load(String path)
public IntParam vocabSize()
CountVectorizerParams
Default: 2^18^
vocabSize
in interface CountVectorizerParams
public DoubleParam minDF()
CountVectorizerParams
Default: 1.0
minDF
in interface CountVectorizerParams
public DoubleParam maxDF()
CountVectorizerParams
Default: (2^63^) - 1
maxDF
in interface CountVectorizerParams
public DoubleParam minTF()
CountVectorizerParams
Note that the parameter is only used in transform of CountVectorizerModel
and does not
affect fitting.
Default: 1.0
minTF
in interface CountVectorizerParams
public BooleanParam binary()
CountVectorizerParams
binary
in interface CountVectorizerParams
public final Param<String> outputCol()
HasOutputCol
outputCol
in interface HasOutputCol
public final Param<String> inputCol()
HasInputCol
inputCol
in interface HasInputCol
public String uid()
Identifiable
uid
in interface Identifiable
public String[] vocabulary()
public CountVectorizerModel setInputCol(String value)
public CountVectorizerModel setOutputCol(String value)
public CountVectorizerModel setMinTF(double value)
public CountVectorizerModel setBinary(boolean value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public CountVectorizerModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<CountVectorizerModel>
extra
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public String toString()
toString
in interface Identifiable
toString
in class Object