public class StandardScalerModel extends Model<StandardScalerModel> implements StandardScalerParams, MLWritable
StandardScaler
.
param: std Standard deviation of the StandardScalerModel param: mean Mean of the StandardScalerModel
Modifier and Type | Method and Description |
---|---|
StandardScalerModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
inputCol()
Param for input column name.
|
static StandardScalerModel |
load(String path) |
Vector |
mean() |
Param<String> |
outputCol()
Param for output column name.
|
static MLReader<StandardScalerModel> |
read() |
StandardScalerModel |
setInputCol(String value) |
StandardScalerModel |
setOutputCol(String value) |
Vector |
std() |
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
BooleanParam |
withMean()
Whether to center the data with mean before scaling.
|
BooleanParam |
withStd()
Whether to scale the data to unit standard deviation.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
params
getWithMean, getWithStd, validateAndTransformSchema
getInputCol
getOutputCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
save
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
public static MLReader<StandardScalerModel> read()
public static StandardScalerModel load(String path)
public BooleanParam withMean()
StandardScalerParams
withMean
in interface StandardScalerParams
public BooleanParam withStd()
StandardScalerParams
withStd
in interface StandardScalerParams
public final Param<String> outputCol()
HasOutputCol
outputCol
in interface HasOutputCol
public final Param<String> inputCol()
HasInputCol
inputCol
in interface HasInputCol
public String uid()
Identifiable
uid
in interface Identifiable
public Vector std()
public Vector mean()
public StandardScalerModel setInputCol(String value)
public StandardScalerModel setOutputCol(String value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public StandardScalerModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<StandardScalerModel>
extra
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public String toString()
toString
in interface Identifiable
toString
in class Object