org.apache.spark.mllib.classification
LogisticRegressionModel
Companion object LogisticRegressionModel
class LogisticRegressionModel extends GeneralizedLinearModel with ClassificationModel with Serializable with Saveable with PMMLExportable
Classification model trained using Multinomial/Binary Logistic Regression.
- Annotations
- @Since("0.8.0")
- Source
- LogisticRegression.scala
- Alphabetic
- By Inheritance
- LogisticRegressionModel
- PMMLExportable
- Saveable
- ClassificationModel
- GeneralizedLinearModel
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
-    new LogisticRegressionModel(weights: Vector, intercept: Double)Constructs a LogisticRegressionModel with weights and intercept for binary classification. Constructs a LogisticRegressionModel with weights and intercept for binary classification. - Annotations
- @Since("1.0.0")
 
-    new LogisticRegressionModel(weights: Vector, intercept: Double, numFeatures: Int, numClasses: Int)- weights
- Weights computed for every feature. 
- intercept
- Intercept computed for this model. (Only used in Binary Logistic Regression. In Multinomial Logistic Regression, the intercepts will not be a single value, so the intercepts will be part of the weights.) 
- numFeatures
- the dimension of the features. 
- numClasses
- the number of possible outcomes for k classes classification problem in Multinomial Logistic Regression. By default, it is binary logistic regression so numClasses will be set to 2. 
 - Annotations
- @Since("1.3.0")
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clearThreshold(): LogisticRegressionModel.this.typeClears the threshold so that predictwill output raw prediction scores.Clears the threshold so that predictwill output raw prediction scores. It is only used for binary classification.- Annotations
- @Since("1.0.0")
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def getThreshold: Option[Double]Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions. Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions. It is only used for binary classification. - Annotations
- @Since("1.3.0")
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    val intercept: Double- Definition Classes
- LogisticRegressionModel → GeneralizedLinearModel
- Annotations
- @Since("1.0.0")
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    val numClasses: Int- Annotations
- @Since("1.3.0")
 
-    val numFeatures: Int- Annotations
- @Since("1.3.0")
 
-    def predict(testData: JavaRDD[Vector]): JavaRDD[Double]Predict values for examples stored in a JavaRDD. Predict values for examples stored in a JavaRDD. - testData
- JavaRDD representing data points to be predicted 
- returns
- a JavaRDD[java.lang.Double] where each entry contains the corresponding prediction 
 - Definition Classes
- ClassificationModel
- Annotations
- @Since("1.0.0")
 
-    def predict(testData: Vector): DoublePredict values for a single data point using the model trained. Predict values for a single data point using the model trained. - testData
- array representing a single data point 
- returns
- Double prediction from the trained model 
 - Definition Classes
- GeneralizedLinearModel
- Annotations
- @Since("1.0.0")
 
-    def predict(testData: RDD[Vector]): RDD[Double]Predict values for the given data set using the model trained. Predict values for the given data set using the model trained. - testData
- RDD representing data points to be predicted 
- returns
- RDD[Double] where each entry contains the corresponding prediction 
 - Definition Classes
- GeneralizedLinearModel
- Annotations
- @Since("1.0.0")
 
-    def predictPoint(dataMatrix: Vector, weightMatrix: Vector, intercept: Double): DoublePredict the result given a data point and the weights learned. Predict the result given a data point and the weights learned. - dataMatrix
- Row vector containing the features for this data point 
- weightMatrix
- Column vector containing the weights of the model 
- intercept
- Intercept of the model. 
 - Attributes
- protected
- Definition Classes
- LogisticRegressionModel → GeneralizedLinearModel
 
-    def save(sc: SparkContext, path: String): UnitSave this model to the given path. Save this model to the given path. This saves: - human-readable (JSON) model metadata to path/metadata/
- Parquet formatted data to path/data/
 The model may be loaded using Loader.load.- sc
- Spark context used to save model data. 
- path
- Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception. 
 - Definition Classes
- LogisticRegressionModel → Saveable
- Annotations
- @Since("1.3.0")
 
-    def setThreshold(threshold: Double): LogisticRegressionModel.this.typeSets the threshold that separates positive predictions from negative predictions in Binary Logistic Regression. Sets the threshold that separates positive predictions from negative predictions in Binary Logistic Regression. An example with prediction score greater than or equal to this threshold is identified as a positive, and negative otherwise. The default value is 0.5. It is only used for binary classification. - Annotations
- @Since("1.0.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toPMML(): StringExport the model to a String in PMML format Export the model to a String in PMML format - Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
 
-    def toPMML(outputStream: OutputStream): UnitExport the model to the OutputStream in PMML format Export the model to the OutputStream in PMML format - Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
 
-    def toPMML(sc: SparkContext, path: String): UnitExport the model to a directory on a distributed file system in PMML format Export the model to a directory on a distributed file system in PMML format - Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
 
-    def toPMML(localPath: String): UnitExport the model to a local file in PMML format Export the model to a local file in PMML format - Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
 
-    def toString(): StringPrint a summary of the model. Print a summary of the model. - Definition Classes
- LogisticRegressionModel → GeneralizedLinearModel → AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-    val weights: Vector- Definition Classes
- LogisticRegressionModel → GeneralizedLinearModel
- Annotations
- @Since("1.0.0")
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)