class NaiveBayesModel extends ClassificationModel with Serializable with Saveable
Model for Naive Bayes Classifiers.
- Annotations
- @Since("0.9.0")
- Source
- NaiveBayes.scala
- Alphabetic
- By Inheritance
- NaiveBayesModel
- Saveable
- ClassificationModel
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    val labels: Array[Double]- Annotations
- @Since("1.0.0")
 
-    val modelType: String- Annotations
- @Since("1.4.0")
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    val pi: Array[Double]- Annotations
- @Since("0.9.0")
 
-    def predict(testData: Vector): DoublePredict values for a single data point using the model trained. Predict values for a single data point using the model trained. - testData
- array representing a single data point 
- returns
- predicted category from the trained model 
 - Definition Classes
- NaiveBayesModel → ClassificationModel
- Annotations
- @Since("1.0.0")
 
-    def predict(testData: RDD[Vector]): RDD[Double]Predict values for the given data set using the model trained. Predict values for the given data set using the model trained. - testData
- RDD representing data points to be predicted 
- returns
- an RDD[Double] where each entry contains the corresponding prediction 
 - Definition Classes
- NaiveBayesModel → ClassificationModel
- Annotations
- @Since("1.0.0")
 
-    def predict(testData: JavaRDD[Vector]): JavaRDD[Double]Predict values for examples stored in a JavaRDD. Predict values for examples stored in a JavaRDD. - testData
- JavaRDD representing data points to be predicted 
- returns
- a JavaRDD[java.lang.Double] where each entry contains the corresponding prediction 
 - Definition Classes
- ClassificationModel
- Annotations
- @Since("1.0.0")
 
-    def predictProbabilities(testData: Vector): VectorPredict posterior class probabilities for a single data point using the model trained. Predict posterior class probabilities for a single data point using the model trained. - testData
- array representing a single data point 
- returns
- predicted posterior class probabilities from the trained model, in the same order as class labels 
 - Annotations
- @Since("1.5.0")
 
-    def predictProbabilities(testData: RDD[Vector]): RDD[Vector]Predict values for the given data set using the model trained. Predict values for the given data set using the model trained. - testData
- RDD representing data points to be predicted 
- returns
- an RDD[Vector] where each entry contains the predicted posterior class probabilities, in the same order as class labels 
 - Annotations
- @Since("1.5.0")
 
-    def save(sc: SparkContext, path: String): UnitSave this model to the given path. Save this model to the given path. This saves: - human-readable (JSON) model metadata to path/metadata/
- Parquet formatted data to path/data/
 The model may be loaded using Loader.load.- sc
- Spark context used to save model data. 
- path
- Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception. 
 - Definition Classes
- NaiveBayesModel → Saveable
- Annotations
- @Since("1.3.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    val theta: Array[Array[Double]]- Annotations
- @Since("0.9.0")
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)