object SVMWithSGD extends Serializable
Top-level methods for calling SVM.
- Annotations
- @Since("0.8.0")
- Source
- SVM.scala
- Note
- Labels used in SVM should be {0, 1}. 
- Alphabetic
- By Inheritance
- SVMWithSGD
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    def train(input: RDD[LabeledPoint], numIterations: Int): SVMModelTrain a SVM model given an RDD of (label, features) pairs. Train a SVM model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using a step size of 1.0. We use the entire data set to update the gradient in each iteration. - input
- RDD of (label, array of features) pairs. 
- numIterations
- Number of iterations of gradient descent to run. 
- returns
- a SVMModel which has the weights and offset from training. 
 - Annotations
- @Since("0.8.0")
- Note
- Labels used in SVM should be {0, 1} 
 
-    def train(input: RDD[LabeledPoint], numIterations: Int, stepSize: Double, regParam: Double): SVMModelTrain a SVM model given an RDD of (label, features) pairs. Train a SVM model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using the specified step size. We use the entire data set to update the gradient in each iteration. - input
- RDD of (label, array of features) pairs. 
- numIterations
- Number of iterations of gradient descent to run. 
- stepSize
- Step size to be used for each iteration of Gradient Descent. 
- regParam
- Regularization parameter. 
- returns
- a SVMModel which has the weights and offset from training. 
 - Annotations
- @Since("0.8.0")
- Note
- Labels used in SVM should be {0, 1} 
 
-    def train(input: RDD[LabeledPoint], numIterations: Int, stepSize: Double, regParam: Double, miniBatchFraction: Double): SVMModelTrain a SVM model given an RDD of (label, features) pairs. Train a SVM model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using the specified step size. Each iteration uses miniBatchFractionfraction of the data to calculate the gradient.- input
- RDD of (label, array of features) pairs. 
- numIterations
- Number of iterations of gradient descent to run. 
- stepSize
- Step size to be used for each iteration of gradient descent. 
- regParam
- Regularization parameter. 
- miniBatchFraction
- Fraction of data to be used per iteration. 
 - Annotations
- @Since("0.8.0")
- Note
- Labels used in SVM should be {0, 1} 
 
-    def train(input: RDD[LabeledPoint], numIterations: Int, stepSize: Double, regParam: Double, miniBatchFraction: Double, initialWeights: Vector): SVMModelTrain a SVM model given an RDD of (label, features) pairs. Train a SVM model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using the specified step size. Each iteration uses miniBatchFractionfraction of the data to calculate the gradient. The weights used in gradient descent are initialized using the initial weights provided.- input
- RDD of (label, array of features) pairs. 
- numIterations
- Number of iterations of gradient descent to run. 
- stepSize
- Step size to be used for each iteration of gradient descent. 
- regParam
- Regularization parameter. 
- miniBatchFraction
- Fraction of data to be used per iteration. 
- initialWeights
- Initial set of weights to be used. Array should be equal in size to the number of features in the data. 
 - Annotations
- @Since("0.8.0")
- Note
- Labels used in SVM should be {0, 1}. 
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)