class LogisticRegressionWithLBFGS extends GeneralizedLinearAlgorithm[LogisticRegressionModel] with Serializable
Train a classification model for Multinomial/Binary Logistic Regression using Limited-memory BFGS. Standard feature scaling and L2 regularization are used by default.
Earlier implementations of LogisticRegressionWithLBFGS applies a regularization penalty to all elements including the intercept. If this is called with one of standard updaters (L1Updater, or SquaredL2Updater) this is translated into a call to ml.LogisticRegression, otherwise this will use the existing mllib GeneralizedLinearAlgorithm trainer, resulting in a regularization penalty to the intercept.
- Annotations
- @Since("1.1.0")
- Source
- LogisticRegression.scala
- Note
- Labels used in Logistic Regression should be {0, 1, ..., k - 1} for k classes multi-label classification problem. 
- Alphabetic
- By Inheritance
- LogisticRegressionWithLBFGS
- GeneralizedLinearAlgorithm
- Serializable
- Logging
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
-  new LogisticRegressionWithLBFGS()
Type Members
-   implicit  class LogStringContext extends AnyRef- Definition Classes
- Logging
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-    def MDC(key: LogKey, value: Any): MDC- Attributes
- protected
- Definition Classes
- Logging
 
-    var addIntercept: BooleanWhether to add intercept (default: false). Whether to add intercept (default: false). - Attributes
- protected
- Definition Classes
- GeneralizedLinearAlgorithm
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def createModel(weights: Vector, intercept: Double): LogisticRegressionModelCreate a model given the weights and intercept Create a model given the weights and intercept - Attributes
- protected
- Definition Classes
- LogisticRegressionWithLBFGS → GeneralizedLinearAlgorithm
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    def generateInitialWeights(input: RDD[LabeledPoint]): VectorGenerate the initial weights when the user does not supply them Generate the initial weights when the user does not supply them - Attributes
- protected
- Definition Classes
- GeneralizedLinearAlgorithm
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def getNumFeatures: IntThe dimension of training features. The dimension of training features. - Definition Classes
- GeneralizedLinearAlgorithm
- Annotations
- @Since("1.4.0")
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def initializeLogIfNecessary(isInterpreter: Boolean): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def isAddIntercept: BooleanGet if the algorithm uses addIntercept Get if the algorithm uses addIntercept - Definition Classes
- GeneralizedLinearAlgorithm
- Annotations
- @Since("1.4.0")
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    def isTraceEnabled(): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def log: Logger- Attributes
- protected
- Definition Classes
- Logging
 
-    def logBasedOnLevel(level: Level)(f: => MessageWithContext): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logName: String- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    var numFeatures: IntThe dimension of training features. The dimension of training features. - Attributes
- protected
- Definition Classes
- GeneralizedLinearAlgorithm
 
-    var numOfLinearPredictor: IntIn GeneralizedLinearModel, only single linear predictor is allowed for both weights and intercept.In GeneralizedLinearModel, only single linear predictor is allowed for both weights and intercept. However, for multinomial logistic regression, with K possible outcomes, we are training K-1 independent binary logistic regression models which requires K-1 sets of linear predictor.As a result, the workaround here is if more than two sets of linear predictors are needed, we construct bigger weightsvector which can hold both weights and intercepts. If the intercepts are added, the dimension ofweightswill be (numOfLinearPredictor) * (numFeatures + 1) . If the intercepts are not added, the dimension ofweightswill be (numOfLinearPredictor) * numFeatures.Thus, the intercepts will be encapsulated into weights, and we leave the value of intercept in GeneralizedLinearModel as zero. - Attributes
- protected
- Definition Classes
- GeneralizedLinearAlgorithm
 
-    val optimizer: LBFGSThe optimizer to solve the problem. The optimizer to solve the problem. - Definition Classes
- LogisticRegressionWithLBFGS → GeneralizedLinearAlgorithm
- Annotations
- @Since("1.1.0")
 
-    def run(input: RDD[LabeledPoint], initialWeights: Vector): LogisticRegressionModelRun Logistic Regression with the configured parameters on an input RDD of LabeledPoint entries starting from the initial weights provided. Run Logistic Regression with the configured parameters on an input RDD of LabeledPoint entries starting from the initial weights provided. If a known updater is used calls the ml implementation, to avoid applying a regularization penalty to the intercept, otherwise defaults to the mllib implementation. If more than two classes or feature scaling is disabled, always uses mllib implementation. Uses user provided weights. In the ml LogisticRegression implementation, the number of corrections used in the LBFGS update can not be configured. So optimizer.setNumCorrections()will have no effect if we fall into that route.- Definition Classes
- LogisticRegressionWithLBFGS → GeneralizedLinearAlgorithm
 
-    def run(input: RDD[LabeledPoint]): LogisticRegressionModelRun Logistic Regression with the configured parameters on an input RDD of LabeledPoint entries. Run Logistic Regression with the configured parameters on an input RDD of LabeledPoint entries. If a known updater is used calls the ml implementation, to avoid applying a regularization penalty to the intercept, otherwise defaults to the mllib implementation. If more than two classes or feature scaling is disabled, always uses mllib implementation. If using ml implementation, uses ml code to generate initial weights. - Definition Classes
- LogisticRegressionWithLBFGS → GeneralizedLinearAlgorithm
 
-    def setIntercept(addIntercept: Boolean): LogisticRegressionWithLBFGS.this.typeSet if the algorithm should add an intercept. Set if the algorithm should add an intercept. Default false. We set the default to false because adding the intercept will cause memory allocation. - Definition Classes
- GeneralizedLinearAlgorithm
- Annotations
- @Since("0.8.0")
 
-    def setNumClasses(numClasses: Int): LogisticRegressionWithLBFGS.this.typeSet the number of possible outcomes for k classes classification problem in Multinomial Logistic Regression. Set the number of possible outcomes for k classes classification problem in Multinomial Logistic Regression. By default, it is binary logistic regression so k will be set to 2. - Annotations
- @Since("1.3.0")
 
-    def setValidateData(validateData: Boolean): LogisticRegressionWithLBFGS.this.typeSet if the algorithm should validate data before training. Set if the algorithm should validate data before training. Default true. - Definition Classes
- GeneralizedLinearAlgorithm
- Annotations
- @Since("0.8.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    var validateData: Boolean- Attributes
- protected
- Definition Classes
- GeneralizedLinearAlgorithm
 
-    val validators: List[(RDD[LabeledPoint]) => Boolean]- Attributes
- protected
- Definition Classes
- LogisticRegressionWithLBFGS → GeneralizedLinearAlgorithm
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-    def withLogContext(context: Map[String, String])(body: => Unit): Unit- Attributes
- protected
- Definition Classes
- Logging
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)