class DistributedLDAModel extends LDAModel
Distributed LDA model. This model stores the inferred topics, the full training dataset, and the topic distributions.
- Annotations
- @Since("1.3.0")
- Source
- LDAModel.scala
- Alphabetic
- By Inheritance
- DistributedLDAModel
- LDAModel
- Saveable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def describeTopics(maxTermsPerTopic: Int): Array[(Array[Int], Array[Double])]Return the topics described by weighted terms. Return the topics described by weighted terms. - maxTermsPerTopic
- Maximum number of terms to collect for each topic. 
- returns
- Array over topics. Each topic is represented as a pair of matching arrays: (term indices, term weights in topic). Each topic's terms are sorted in order of decreasing weight. 
 - Definition Classes
- DistributedLDAModel → LDAModel
- Annotations
- @Since("1.3.0")
 
-    def describeTopics(): Array[(Array[Int], Array[Double])]Return the topics described by weighted terms. Return the topics described by weighted terms. WARNING: If vocabSize and k are large, this can return a large object! - returns
- Array over topics. Each topic is represented as a pair of matching arrays: (term indices, term weights in topic). Each topic's terms are sorted in order of decreasing weight. 
 - Definition Classes
- LDAModel
- Annotations
- @Since("1.3.0")
 
-    val docConcentration: VectorConcentration parameter (commonly named "alpha") for the prior placed on documents' distributions over topics ("theta"). Concentration parameter (commonly named "alpha") for the prior placed on documents' distributions over topics ("theta"). This is the parameter to a Dirichlet distribution. - Definition Classes
- DistributedLDAModel → LDAModel
- Annotations
- @Since("1.5.0")
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    val gammaShape: DoubleShape parameter for random initialization of variational parameter gamma. Shape parameter for random initialization of variational parameter gamma. Used for variational inference for perplexity and other test-time computations. - Attributes
- protected[clustering]
- Definition Classes
- DistributedLDAModel → LDAModel
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    def javaTopTopicsPerDocument(k: Int): JavaRDD[(Long, Array[Int], Array[Double])]Java-friendly version of topTopicsPerDocument Java-friendly version of topTopicsPerDocument - Annotations
- @Since("1.5.0")
 
-    lazy val javaTopicAssignments: JavaRDD[(Long, Array[Int], Array[Int])]Java-friendly version of topicAssignments Java-friendly version of topicAssignments - Annotations
- @Since("1.5.0")
 
-    def javaTopicDistributions: JavaPairRDD[Long, Vector]Java-friendly version of topicDistributions Java-friendly version of topicDistributions - Annotations
- @Since("1.4.1")
 
-    val k: IntNumber of topics Number of topics - Definition Classes
- DistributedLDAModel → LDAModel
- Annotations
- @Since("1.3.0")
 
-    lazy val logLikelihood: DoubleLog likelihood of the observed tokens in the training set, given the current parameter estimates: log P(docs | topics, topic distributions for docs, alpha, eta) Log likelihood of the observed tokens in the training set, given the current parameter estimates: log P(docs | topics, topic distributions for docs, alpha, eta) Note: - Annotations
- @Since("1.3.0")
 
-    lazy val logPrior: DoubleLog probability of the current parameter estimate: log P(topics, topic distributions for docs | alpha, eta) Log probability of the current parameter estimate: log P(topics, topic distributions for docs | alpha, eta) - Annotations
- @Since("1.3.0")
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    def save(sc: SparkContext, path: String): UnitSave this model to the given path. Save this model to the given path. This saves: - human-readable (JSON) model metadata to path/metadata/
- Parquet formatted data to path/data/
 The model may be loaded using Loader.load.- sc
- Spark context used to save model data. 
- path
- Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception. 
 - Definition Classes
- DistributedLDAModel → Saveable
- Annotations
- @Since("1.5.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toLocal: LocalLDAModelConvert model to a local model. Convert model to a local model. The local model stores the inferred topics but not the topic distributions for training documents. - Annotations
- @Since("1.3.0")
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    def topDocumentsPerTopic(maxDocumentsPerTopic: Int): Array[(Array[Long], Array[Double])]Return the top documents for each topic Return the top documents for each topic - maxDocumentsPerTopic
- Maximum number of documents to collect for each topic. 
- returns
- Array over topics. Each element represent as a pair of matching arrays: (IDs for the documents, weights of the topic in these documents). For each topic, documents are sorted in order of decreasing topic weights. 
 - Annotations
- @Since("1.5.0")
 
-    def topTopicsPerDocument(k: Int): RDD[(Long, Array[Int], Array[Double])]For each document, return the top k weighted topics for that document and their weights. For each document, return the top k weighted topics for that document and their weights. - returns
- RDD of (doc ID, topic indices, topic weights) 
 - Annotations
- @Since("1.5.0")
 
-    lazy val topicAssignments: RDD[(Long, Array[Int], Array[Int])]Return the top topic for each (doc, term) pair. Return the top topic for each (doc, term) pair. I.e., for each document, what is the most likely topic generating each term? - returns
- RDD of (doc ID, assignment of top topic index for each term), where the assignment is specified via a pair of zippable arrays (term indices, topic indices). Note that terms will be omitted if not present in the document. 
 - Annotations
- @Since("1.5.0")
 
-    val topicConcentration: DoubleConcentration parameter (commonly named "beta" or "eta") for the prior placed on topics' distributions over terms. Concentration parameter (commonly named "beta" or "eta") for the prior placed on topics' distributions over terms. This is the parameter to a symmetric Dirichlet distribution. - Definition Classes
- DistributedLDAModel → LDAModel
- Annotations
- @Since("1.5.0")
- Note
- The topics' distributions over terms are called "beta" in the original LDA paper by Blei et al., but are called "phi" in many later papers such as Asuncion et al., 2009. 
 
-    def topicDistributions: RDD[(Long, Vector)]For each document in the training set, return the distribution over topics for that document ("theta_doc"). For each document in the training set, return the distribution over topics for that document ("theta_doc"). - returns
- RDD of (document ID, topic distribution) pairs 
 - Annotations
- @Since("1.3.0")
 
-    lazy val topicsMatrix: MatrixInferred topics, where each topic is represented by a distribution over terms. Inferred topics, where each topic is represented by a distribution over terms. This is a matrix of size vocabSize x k, where each column is a topic. No guarantees are given about the ordering of the topics. WARNING: This matrix is collected from an RDD. Beware memory usage when vocabSize, k are large. - Definition Classes
- DistributedLDAModel → LDAModel
- Annotations
- @Since("1.3.0")
 
-    val vocabSize: IntVocabulary size (number of terms or terms in the vocabulary) Vocabulary size (number of terms or terms in the vocabulary) - Definition Classes
- DistributedLDAModel → LDAModel
- Annotations
- @Since("1.3.0")
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)