org.apache.spark.mllib.clustering
PowerIterationClustering
Companion object PowerIterationClustering
class PowerIterationClustering extends Serializable
Power Iteration Clustering (PIC), a scalable graph clustering algorithm developed by Lin and Cohen. From the abstract: PIC finds a very low-dimensional embedding of a dataset using truncated power iteration on a normalized pair-wise similarity matrix of the data.
- Annotations
- @Since("1.3.0")
- Source
- PowerIterationClustering.scala
- See also
- Alphabetic
- By Inheritance
- PowerIterationClustering
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
-    new PowerIterationClustering()Constructs a PIC instance with default parameters: {k: 2, maxIterations: 100, initMode: "random"}. Constructs a PIC instance with default parameters: {k: 2, maxIterations: 100, initMode: "random"}. - Annotations
- @Since("1.3.0")
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    def run(similarities: JavaRDD[(Long, Long, Double)]): PowerIterationClusteringModelA Java-friendly version of PowerIterationClustering.run.A Java-friendly version of PowerIterationClustering.run.- Annotations
- @Since("1.3.0")
 
-    def run(similarities: RDD[(Long, Long, Double)]): PowerIterationClusteringModelRun the PIC algorithm. Run the PIC algorithm. - similarities
- an RDD of (i, j, sij) tuples representing the affinity matrix, which is the matrix A in the PIC paper. The similarity sij must be nonnegative. This is a symmetric matrix and hence sij = sji. For any (i, j) with nonzero similarity, there should be either (i, j, sij) or (j, i, sji) in the input. Tuples with i = j are ignored, because we assume sij = 0.0. 
- returns
- a PowerIterationClusteringModel that contains the clustering result 
 - Annotations
- @Since("1.3.0")
 
-    def run(graph: Graph[Double, Double]): PowerIterationClusteringModelRun the PIC algorithm on Graph. Run the PIC algorithm on Graph. - graph
- an affinity matrix represented as graph, which is the matrix A in the PIC paper. The similarity sij represented as the edge between vertices (i, j) must be nonnegative. This is a symmetric matrix and hence sij = sji. For any (i, j) with nonzero similarity, there should be either (i, j, sij) or (j, i, sji) in the input. Tuples with i = j are ignored, because we assume sij = 0.0. 
- returns
- a PowerIterationClusteringModel that contains the clustering result 
 - Annotations
- @Since("1.5.0")
 
-    def setInitializationMode(mode: String): PowerIterationClustering.this.typeSet the initialization mode. Set the initialization mode. This can be either "random" to use a random vector as vertex properties, or "degree" to use normalized sum similarities. Default: random. - Annotations
- @Since("1.3.0")
 
-    def setK(k: Int): PowerIterationClustering.this.typeSet the number of clusters. Set the number of clusters. - Annotations
- @Since("1.3.0")
 
-    def setMaxIterations(maxIterations: Int): PowerIterationClustering.this.typeSet maximum number of iterations of the power iteration loop Set maximum number of iterations of the power iteration loop - Annotations
- @Since("1.3.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)