class StreamingKMeans extends Logging with Serializable
StreamingKMeans provides methods for configuring a streaming k-means analysis, training the model on streaming, and using the model to make predictions on streaming data. See KMeansModel for details on algorithm and update rules.
Use a builder pattern to construct a streaming k-means analysis in an application, like:
val model = new StreamingKMeans() .setDecayFactor(0.5) .setK(3) .setRandomCenters(5, 100.0) .trainOn(DStream)
- Annotations
- @Since("1.2.0")
- Source
- StreamingKMeans.scala
- Alphabetic
- By Inheritance
- StreamingKMeans
- Serializable
- Logging
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
-   implicit  class LogStringContext extends AnyRef- Definition Classes
- Logging
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-    def MDC(key: LogKey, value: Any): MDC- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    var decayFactor: Double- Annotations
- @Since("1.2.0")
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def initializeLogIfNecessary(isInterpreter: Boolean): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    def isTraceEnabled(): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    var k: Int- Annotations
- @Since("1.2.0")
 
-    def latestModel(): StreamingKMeansModelReturn the latest model. Return the latest model. - Annotations
- @Since("1.2.0")
 
-    def log: Logger- Attributes
- protected
- Definition Classes
- Logging
 
-    def logBasedOnLevel(level: Level)(f: => MessageWithContext): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logName: String- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    var model: StreamingKMeansModel- Attributes
- protected
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    def predictOn(data: JavaDStream[Vector]): JavaDStream[Integer]Java-friendly version of predictOn.Java-friendly version of predictOn.- Annotations
- @Since("1.4.0")
 
-    def predictOn(data: DStream[Vector]): DStream[Int]Use the clustering model to make predictions on batches of data from a DStream. Use the clustering model to make predictions on batches of data from a DStream. - data
- DStream containing vector data 
- returns
- DStream containing predictions 
 - Annotations
- @Since("1.2.0")
 
-    def predictOnValues[K](data: JavaPairDStream[K, Vector]): JavaPairDStream[K, Integer]Java-friendly version of predictOnValues.Java-friendly version of predictOnValues.- Annotations
- @Since("1.4.0")
 
-    def predictOnValues[K](data: DStream[(K, Vector)])(implicit arg0: ClassTag[K]): DStream[(K, Int)]Use the model to make predictions on the values of a DStream and carry over its keys. Use the model to make predictions on the values of a DStream and carry over its keys. - K
- key type 
- data
- DStream containing (key, feature vector) pairs 
- returns
- DStream containing the input keys and the predictions as values 
 - Annotations
- @Since("1.2.0")
 
-    def setDecayFactor(a: Double): StreamingKMeans.this.typeSet the forgetfulness of the previous centroids. Set the forgetfulness of the previous centroids. - Annotations
- @Since("1.2.0")
 
-    def setHalfLife(halfLife: Double, timeUnit: String): StreamingKMeans.this.typeSet the half life and time unit ("batches" or "points"). Set the half life and time unit ("batches" or "points"). If points, then the decay factor is raised to the power of number of new points and if batches, then decay factor will be used as is. - Annotations
- @Since("1.2.0")
 
-    def setInitialCenters(centers: Array[Vector], weights: Array[Double]): StreamingKMeans.this.typeSpecify initial centers directly. Specify initial centers directly. - Annotations
- @Since("1.2.0")
 
-    def setK(k: Int): StreamingKMeans.this.typeSet the number of clusters. Set the number of clusters. - Annotations
- @Since("1.2.0")
 
-    def setRandomCenters(dim: Int, weight: Double, seed: Long = Utils.random.nextLong): StreamingKMeans.this.typeInitialize random centers, requiring only the number of dimensions. Initialize random centers, requiring only the number of dimensions. - dim
- Number of dimensions 
- weight
- Weight for each center 
- seed
- Random seed 
 - Annotations
- @Since("1.2.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    var timeUnit: String- Annotations
- @Since("1.2.0")
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    def trainOn(data: JavaDStream[Vector]): UnitJava-friendly version of trainOn.Java-friendly version of trainOn.- Annotations
- @Since("1.4.0")
 
-    def trainOn(data: DStream[Vector]): UnitUpdate the clustering model by training on batches of data from a DStream. Update the clustering model by training on batches of data from a DStream. This operation registers a DStream for training the model, checks whether the cluster centers have been initialized, and updates the model using each batch of data from the stream. - data
- DStream containing vector data 
 - Annotations
- @Since("1.2.0")
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-    def withLogContext(context: Map[String, String])(body: => Unit): Unit- Attributes
- protected
- Definition Classes
- Logging
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)