class KMeansModel extends Saveable with Serializable with PMMLExportable
A clustering model for K-means. Each point belongs to the cluster with the closest center.
- Annotations
- @Since("0.8.0")
- Source
- KMeansModel.scala
- Alphabetic
- By Inheritance
- KMeansModel
- PMMLExportable
- Serializable
- Saveable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
-    new KMeansModel(centers: Iterable[Vector])A Java-friendly constructor that takes an Iterable of Vectors. A Java-friendly constructor that takes an Iterable of Vectors. - Annotations
- @Since("1.4.0")
 
-    new KMeansModel(clusterCenters: Array[Vector])- Annotations
- @Since("1.1.0")
 
-  new KMeansModel(clusterCenters: Array[Vector], distanceMeasure: String, trainingCost: Double, numIter: Int)
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    val clusterCenters: Array[Vector]- Annotations
- @Since("1.0.0")
 
-    def computeCost(data: RDD[Vector]): DoubleReturn the K-means cost (sum of squared distances of points to their nearest center) for this model on the given data. Return the K-means cost (sum of squared distances of points to their nearest center) for this model on the given data. - Annotations
- @Since("0.8.0")
 
-    val distanceMeasure: String- Annotations
- @Since("2.4.0")
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    def k: IntTotal number of clusters. Total number of clusters. - Annotations
- @Since("0.8.0")
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    def predict(points: JavaRDD[Vector]): JavaRDD[Integer]Maps given points to their cluster indices. Maps given points to their cluster indices. - Annotations
- @Since("1.0.0")
 
-    def predict(points: RDD[Vector]): RDD[Int]Maps given points to their cluster indices. Maps given points to their cluster indices. - Annotations
- @Since("1.0.0")
 
-    def predict(point: Vector): IntReturns the cluster index that a given point belongs to. Returns the cluster index that a given point belongs to. - Annotations
- @Since("0.8.0")
 
-    def save(sc: SparkContext, path: String): UnitSave this model to the given path. Save this model to the given path. This saves: - human-readable (JSON) model metadata to path/metadata/
- Parquet formatted data to path/data/
 The model may be loaded using Loader.load.- sc
- Spark context used to save model data. 
- path
- Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception. 
 - Definition Classes
- KMeansModel → Saveable
- Annotations
- @Since("1.4.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toPMML(): StringExport the model to a String in PMML format Export the model to a String in PMML format - Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
 
-    def toPMML(outputStream: OutputStream): UnitExport the model to the OutputStream in PMML format Export the model to the OutputStream in PMML format - Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
 
-    def toPMML(sc: SparkContext, path: String): UnitExport the model to a directory on a distributed file system in PMML format Export the model to a directory on a distributed file system in PMML format - Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
 
-    def toPMML(localPath: String): UnitExport the model to a local file in PMML format Export the model to a local file in PMML format - Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    val trainingCost: Double- Annotations
- @Since("2.4.0")
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)