public class RobustScaler extends Estimator<RobustScalerModel> implements RobustScalerParams, DefaultParamsWritable
Constructor and Description |
---|
RobustScaler() |
RobustScaler(String uid) |
Modifier and Type | Method and Description |
---|---|
RobustScaler |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
RobustScalerModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
Param<String> |
inputCol()
Param for input column name.
|
static RobustScaler |
load(String path) |
DoubleParam |
lower()
Lower quantile to calculate quantile range, shared by all features
Default: 0.25
|
Param<String> |
outputCol()
Param for output column name.
|
static MLReader<T> |
read() |
DoubleParam |
relativeError()
Param for the relative target precision for the approximate quantile algorithm.
|
RobustScaler |
setInputCol(String value) |
RobustScaler |
setLower(double value) |
RobustScaler |
setOutputCol(String value) |
RobustScaler |
setRelativeError(double value) |
RobustScaler |
setUpper(double value) |
RobustScaler |
setWithCentering(boolean value) |
RobustScaler |
setWithScaling(boolean value) |
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
DoubleParam |
upper()
Upper quantile to calculate quantile range, shared by all features
Default: 0.75
|
BooleanParam |
withCentering()
Whether to center the data with median before scaling.
|
BooleanParam |
withScaling()
Whether to scale the data to quantile range.
|
params
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getLower, getUpper, getWithCentering, getWithScaling, validateAndTransformSchema
getInputCol
getOutputCol
getRelativeError
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
write
save
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
public static RobustScaler load(String path)
public static MLReader<T> read()
public DoubleParam lower()
RobustScalerParams
lower
in interface RobustScalerParams
public DoubleParam upper()
RobustScalerParams
upper
in interface RobustScalerParams
public BooleanParam withCentering()
RobustScalerParams
withCentering
in interface RobustScalerParams
public BooleanParam withScaling()
RobustScalerParams
withScaling
in interface RobustScalerParams
public final DoubleParam relativeError()
HasRelativeError
relativeError
in interface HasRelativeError
public final Param<String> outputCol()
HasOutputCol
outputCol
in interface HasOutputCol
public final Param<String> inputCol()
HasInputCol
inputCol
in interface HasInputCol
public String uid()
Identifiable
uid
in interface Identifiable
public RobustScaler setInputCol(String value)
public RobustScaler setOutputCol(String value)
public RobustScaler setLower(double value)
public RobustScaler setUpper(double value)
public RobustScaler setWithCentering(boolean value)
public RobustScaler setWithScaling(boolean value)
public RobustScaler setRelativeError(double value)
public RobustScalerModel fit(Dataset<?> dataset)
Estimator
fit
in class Estimator<RobustScalerModel>
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public RobustScaler copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Estimator<RobustScalerModel>
extra
- (undocumented)