public class IsotonicRegression extends Estimator<IsotonicRegressionModel> implements IsotonicRegressionBase, DefaultParamsWritable
Currently implemented using parallelized pool adjacent violators algorithm. Only univariate (single feature) algorithm supported.
Uses IsotonicRegression
.
Constructor and Description |
---|
IsotonicRegression() |
IsotonicRegression(String uid) |
Modifier and Type | Method and Description |
---|---|
IsotonicRegression |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
IntParam |
featureIndex()
Param for the index of the feature if
featuresCol is a vector column (default: 0 ), no
effect otherwise. |
Param<String> |
featuresCol()
Param for features column name.
|
IsotonicRegressionModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
BooleanParam |
isotonic()
Param for whether the output sequence should be isotonic/increasing (true) or
antitonic/decreasing (false).
|
Param<String> |
labelCol()
Param for label column name.
|
static IsotonicRegression |
load(String path) |
Param<String> |
predictionCol()
Param for prediction column name.
|
static MLReader<T> |
read() |
IsotonicRegression |
setFeatureIndex(int value) |
IsotonicRegression |
setFeaturesCol(String value) |
IsotonicRegression |
setIsotonic(boolean value) |
IsotonicRegression |
setLabelCol(String value) |
IsotonicRegression |
setPredictionCol(String value) |
IsotonicRegression |
setWeightCol(String value) |
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
weightCol()
Param for weight column name.
|
params
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
extractWeightedLabeledPoints, getFeatureIndex, getIsotonic, hasWeightCol, validateAndTransformSchema
getFeaturesCol
getLabelCol
getPredictionCol
getWeightCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
write
save
public IsotonicRegression(String uid)
public IsotonicRegression()
public static IsotonicRegression load(String path)
public static MLReader<T> read()
public final BooleanParam isotonic()
IsotonicRegressionBase
isotonic
in interface IsotonicRegressionBase
public final IntParam featureIndex()
IsotonicRegressionBase
featuresCol
is a vector column (default: 0
), no
effect otherwise.featureIndex
in interface IsotonicRegressionBase
public final Param<String> weightCol()
HasWeightCol
weightCol
in interface HasWeightCol
public final Param<String> predictionCol()
HasPredictionCol
predictionCol
in interface HasPredictionCol
public final Param<String> labelCol()
HasLabelCol
labelCol
in interface HasLabelCol
public final Param<String> featuresCol()
HasFeaturesCol
featuresCol
in interface HasFeaturesCol
public String uid()
Identifiable
uid
in interface Identifiable
public IsotonicRegression setLabelCol(String value)
public IsotonicRegression setFeaturesCol(String value)
public IsotonicRegression setPredictionCol(String value)
public IsotonicRegression setIsotonic(boolean value)
public IsotonicRegression setWeightCol(String value)
public IsotonicRegression setFeatureIndex(int value)
public IsotonicRegression copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Estimator<IsotonicRegressionModel>
extra
- (undocumented)public IsotonicRegressionModel fit(Dataset<?> dataset)
Estimator
fit
in class Estimator<IsotonicRegressionModel>
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)