org.apache.spark.ml.regression
GeneralizedLinearRegression
Companion object GeneralizedLinearRegression
class GeneralizedLinearRegression extends Regressor[Vector, GeneralizedLinearRegression, GeneralizedLinearRegressionModel] with GeneralizedLinearRegressionBase with DefaultParamsWritable with Logging
Fit a Generalized Linear Model (see Generalized linear model (Wikipedia)) specified by giving a symbolic description of the linear predictor (link function) and a description of the error distribution (family). It supports "gaussian", "binomial", "poisson", "gamma" and "tweedie" as family. Valid link functions for each family is listed below. The first link function of each family is the default one.
- "gaussian" : "identity", "log", "inverse"
- "binomial" : "logit", "probit", "cloglog"
- "poisson" : "log", "identity", "sqrt"
- "gamma" : "inverse", "identity", "log"
- "tweedie" : power link function specified through "linkPower". The default link power in the tweedie family is 1 - variancePower.
- Annotations
- @Since("2.0.0")
- Source
- GeneralizedLinearRegression.scala
- Grouped
- Alphabetic
- By Inheritance
- GeneralizedLinearRegression
- DefaultParamsWritable
- MLWritable
- GeneralizedLinearRegressionBase
- HasAggregationDepth
- HasSolver
- HasWeightCol
- HasRegParam
- HasTol
- HasMaxIter
- HasFitIntercept
- Regressor
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
-   implicit  class LogStringContext extends AnyRef- Definition Classes
- Logging
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def $[T](param: Param[T]): TAn alias for getOrDefault().An alias for getOrDefault().- Attributes
- protected
- Definition Classes
- Params
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-    def MDC(key: LogKey, value: Any): MDC- Attributes
- protected
- Definition Classes
- Logging
 
-   final  val aggregationDepth: IntParamParam for suggested depth for treeAggregate (>= 2). Param for suggested depth for treeAggregate (>= 2). - Definition Classes
- HasAggregationDepth
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-   final  def clear(param: Param[_]): GeneralizedLinearRegression.this.typeClears the user-supplied value for the input param. Clears the user-supplied value for the input param. - Definition Classes
- Params
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def copy(extra: ParamMap): GeneralizedLinearRegressionCreates a copy of this instance with the same UID and some extra params. Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().- Definition Classes
- GeneralizedLinearRegression → Predictor → Estimator → PipelineStage → Params
- Annotations
- @Since("2.0.0")
 
-    def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): TCopies param values from this instance to another instance for params shared by them. Copies param values from this instance to another instance for params shared by them. This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and toparamMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
- the target instance, which should work with the same set of default Params as this source instance 
- extra
- extra params to be copied to the target's - paramMap
- returns
- the target instance with param values copied 
 - Attributes
- protected
- Definition Classes
- Params
 
-   final  def defaultCopy[T <: Params](extra: ParamMap): TDefault implementation of copy with extra params. Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance. - Attributes
- protected
- Definition Classes
- Params
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    def estimateModelSize(dataset: Dataset[_]): LongFor ml connect only. For ml connect only. Estimate an upper-bound size of the model to be fitted in bytes, based on the parameters and the dataset, e.g., using $(k) and numFeatures to estimate a k-means model size. 1, Both driver side memory usage and distributed objects size (like DataFrame, RDD, Graph, Summary) are counted. 2, Lazy vals are not counted, e.g., an auxiliary object used in prediction. 3, If there is no enough information to get an accurate size, try to estimate the upper-bound size, e.g. - Given a LogisticRegression estimator, assume the coefficients are dense, even though the actual fitted model might be sparse (by L1 penalty).
- Given a tree model, assume all underlying trees are complete binary trees, even
     though some branches might be pruned or truncated.
4, For some model such as tree model, estimating model size before training is hard,
   the estimateModelSizemethod is not supported.
 - Definition Classes
- GeneralizedLinearRegression → Estimator
 
-    def explainParam(param: Param[_]): StringExplains a param. Explains a param. - param
- input param, must belong to this instance. 
- returns
- a string that contains the input param name, doc, and optionally its default value and the user-supplied value 
 - Definition Classes
- Params
 
-    def explainParams(): StringExplains all params of this instance. Explains all params of this instance. See explainParam().- Definition Classes
- Params
 
-   final  def extractParamMap(): ParamMapextractParamMapwith no extra values.extractParamMapwith no extra values.- Definition Classes
- Params
 
-   final  def extractParamMap(extra: ParamMap): ParamMapExtracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. - Definition Classes
- Params
 
-   final  val family: Param[String]Param for the name of family which is a description of the error distribution to be used in the model. Param for the name of family which is a description of the error distribution to be used in the model. Supported options: "gaussian", "binomial", "poisson", "gamma" and "tweedie". Default is "gaussian". - Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since("2.0.0")
 
-   final  val featuresCol: Param[String]Param for features column name. Param for features column name. - Definition Classes
- HasFeaturesCol
 
-    def fit(dataset: Dataset[_]): GeneralizedLinearRegressionModelFits a model to the input data. 
-    def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[GeneralizedLinearRegressionModel]Fits multiple models to the input data with multiple sets of parameters. Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training. - dataset
- input dataset 
- paramMaps
- An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted models, matching the input parameter maps 
 - Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
 
-    def fit(dataset: Dataset[_], paramMap: ParamMap): GeneralizedLinearRegressionModelFits a single model to the input data with provided parameter map. Fits a single model to the input data with provided parameter map. - dataset
- input dataset 
- paramMap
- Parameter map. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted model 
 - Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
 
-    def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): GeneralizedLinearRegressionModelFits a single model to the input data with optional parameters. Fits a single model to the input data with optional parameters. - dataset
- input dataset 
- firstParamPair
- the first param pair, overrides embedded params 
- otherParamPairs
- other param pairs. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted model 
 - Definition Classes
- Estimator
- Annotations
- @Since("2.0.0") @varargs()
 
-   final  val fitIntercept: BooleanParamParam for whether to fit an intercept term. Param for whether to fit an intercept term. - Definition Classes
- HasFitIntercept
 
-   final  def get[T](param: Param[T]): Option[T]Optionally returns the user-supplied value of a param. Optionally returns the user-supplied value of a param. - Definition Classes
- Params
 
-   final  def getAggregationDepth: Int- Definition Classes
- HasAggregationDepth
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def getDefault[T](param: Param[T]): Option[T]Gets the default value of a parameter. Gets the default value of a parameter. - Definition Classes
- Params
 
-    def getFamily: String- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since("2.0.0")
 
-   final  def getFeaturesCol: String- Definition Classes
- HasFeaturesCol
 
-   final  def getFitIntercept: Boolean- Definition Classes
- HasFitIntercept
 
-   final  def getLabelCol: String- Definition Classes
- HasLabelCol
 
-    def getLink: String- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since("2.0.0")
 
-    def getLinkPower: Double- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since("2.2.0")
 
-    def getLinkPredictionCol: String- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since("2.0.0")
 
-   final  def getMaxIter: Int- Definition Classes
- HasMaxIter
 
-    def getOffsetCol: String- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since("2.3.0")
 
-   final  def getOrDefault[T](param: Param[T]): TGets the value of a param in the embedded param map or its default value. Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set. - Definition Classes
- Params
 
-    def getParam(paramName: String): Param[Any]Gets a param by its name. Gets a param by its name. - Definition Classes
- Params
 
-   final  def getPredictionCol: String- Definition Classes
- HasPredictionCol
 
-   final  def getRegParam: Double- Definition Classes
- HasRegParam
 
-   final  def getSolver: String- Definition Classes
- HasSolver
 
-   final  def getTol: Double- Definition Classes
- HasTol
 
-    def getVariancePower: Double- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since("2.2.0")
 
-   final  def getWeightCol: String- Definition Classes
- HasWeightCol
 
-   final  def hasDefault[T](param: Param[T]): BooleanTests whether the input param has a default value set. Tests whether the input param has a default value set. - Definition Classes
- Params
 
-    def hasParam(paramName: String): BooleanTests whether this instance contains a param with a given name. Tests whether this instance contains a param with a given name. - Definition Classes
- Params
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def initializeLogIfNecessary(isInterpreter: Boolean): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def isDefined(param: Param[_]): BooleanChecks whether a param is explicitly set or has a default value. Checks whether a param is explicitly set or has a default value. - Definition Classes
- Params
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def isSet(param: Param[_]): BooleanChecks whether a param is explicitly set. Checks whether a param is explicitly set. - Definition Classes
- Params
 
-    def isTraceEnabled(): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-   final  val labelCol: Param[String]Param for label column name. Param for label column name. - Definition Classes
- HasLabelCol
 
-   final  val link: Param[String]Param for the name of link function which provides the relationship between the linear predictor and the mean of the distribution function. Param for the name of link function which provides the relationship between the linear predictor and the mean of the distribution function. Supported options: "identity", "log", "inverse", "logit", "probit", "cloglog" and "sqrt". This is used only when family is not "tweedie". The link function for the "tweedie" family must be specified through linkPower. - Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since("2.0.0")
 
-   final  val linkPower: DoubleParamParam for the index in the power link function. Param for the index in the power link function. Only applicable to the Tweedie family. Note that link power 0, 1, -1 or 0.5 corresponds to the Log, Identity, Inverse or Sqrt link, respectively. When not set, this value defaults to 1 - variancePower, which matches the R "statmod" package. - Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since("2.2.0")
 
-   final  val linkPredictionCol: Param[String]Param for link prediction (linear predictor) column name. Param for link prediction (linear predictor) column name. Default is not set, which means we do not output link prediction. - Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since("2.0.0")
 
-    def log: Logger- Attributes
- protected
- Definition Classes
- Logging
 
-    def logBasedOnLevel(level: Level)(f: => MessageWithContext): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logName: String- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  val maxIter: IntParamParam for maximum number of iterations (>= 0). Param for maximum number of iterations (>= 0). - Definition Classes
- HasMaxIter
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  val offsetCol: Param[String]Param for offset column name. Param for offset column name. If this is not set or empty, we treat all instance offsets as 0.0. The feature specified as offset has a constant coefficient of 1.0. - Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since("2.3.0")
 
-    lazy val params: Array[Param[_]]Returns all params sorted by their names. Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param. - Definition Classes
- Params
- Note
- Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params. 
 
-   final  val predictionCol: Param[String]Param for prediction column name. Param for prediction column name. - Definition Classes
- HasPredictionCol
 
-   final  val regParam: DoubleParamParam for regularization parameter (>= 0). Param for regularization parameter (>= 0). - Definition Classes
- HasRegParam
 
-    def save(path: String): UnitSaves this ML instance to the input path, a shortcut of write.save(path).Saves this ML instance to the input path, a shortcut of write.save(path).- Definition Classes
- MLWritable
- Annotations
- @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
 
-   final  def set(paramPair: ParamPair[_]): GeneralizedLinearRegression.this.typeSets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
-   final  def set(param: String, value: Any): GeneralizedLinearRegression.this.typeSets a parameter (by name) in the embedded param map. Sets a parameter (by name) in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
-   final  def set[T](param: Param[T], value: T): GeneralizedLinearRegression.this.typeSets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Definition Classes
- Params
 
-    def setAggregationDepth(value: Int): GeneralizedLinearRegression.this.type- Annotations
- @Since("3.0.0")
 
-   final  def setDefault(paramPairs: ParamPair[_]*): GeneralizedLinearRegression.this.typeSets default values for a list of params. Sets default values for a list of params. Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
- a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called. 
 - Attributes
- protected
- Definition Classes
- Params
 
-   final  def setDefault[T](param: Param[T], value: T): GeneralizedLinearRegression.this.typeSets a default value for a param. 
-    def setFamily(value: String): GeneralizedLinearRegression.this.typeSets the value of param family. Sets the value of param family. Default is "gaussian". - Annotations
- @Since("2.0.0")
 
-    def setFeaturesCol(value: String): GeneralizedLinearRegression- Definition Classes
- Predictor
 
-    def setFitIntercept(value: Boolean): GeneralizedLinearRegression.this.typeSets if we should fit the intercept. Sets if we should fit the intercept. Default is true. - Annotations
- @Since("2.0.0")
 
-    def setLabelCol(value: String): GeneralizedLinearRegression- Definition Classes
- Predictor
 
-    def setLink(value: String): GeneralizedLinearRegression.this.typeSets the value of param link. Sets the value of param link. Used only when family is not "tweedie". - Annotations
- @Since("2.0.0")
 
-    def setLinkPower(value: Double): GeneralizedLinearRegression.this.typeSets the value of param linkPower. Sets the value of param linkPower. Used only when family is "tweedie". - Annotations
- @Since("2.2.0")
 
-    def setLinkPredictionCol(value: String): GeneralizedLinearRegression.this.typeSets the link prediction (linear predictor) column name. Sets the link prediction (linear predictor) column name. - Annotations
- @Since("2.0.0")
 
-    def setMaxIter(value: Int): GeneralizedLinearRegression.this.typeSets the maximum number of iterations (applicable for solver "irls"). Sets the maximum number of iterations (applicable for solver "irls"). Default is 25. - Annotations
- @Since("2.0.0")
 
-    def setOffsetCol(value: String): GeneralizedLinearRegression.this.typeSets the value of param offsetCol. Sets the value of param offsetCol. If this is not set or empty, we treat all instance offsets as 0.0. Default is not set, so all instances have offset 0.0. - Annotations
- @Since("2.3.0")
 
-    def setPredictionCol(value: String): GeneralizedLinearRegression- Definition Classes
- Predictor
 
-    def setRegParam(value: Double): GeneralizedLinearRegression.this.typeSets the regularization parameter for L2 regularization. Sets the regularization parameter for L2 regularization. The regularization term is $$ 0.5 * regParam * L2norm(coefficients)^2 $$ Default is 0.0.- Annotations
- @Since("2.0.0")
 
-    def setSolver(value: String): GeneralizedLinearRegression.this.typeSets the solver algorithm used for optimization. Sets the solver algorithm used for optimization. Currently only supports "irls" which is also the default solver. - Annotations
- @Since("2.0.0")
 
-    def setTol(value: Double): GeneralizedLinearRegression.this.typeSets the convergence tolerance of iterations. Sets the convergence tolerance of iterations. Smaller value will lead to higher accuracy with the cost of more iterations. Default is 1E-6. - Annotations
- @Since("2.0.0")
 
-    def setVariancePower(value: Double): GeneralizedLinearRegression.this.typeSets the value of param variancePower. Sets the value of param variancePower. Used only when family is "tweedie". Default is 0.0, which corresponds to the "gaussian" family. - Annotations
- @Since("2.2.0")
 
-    def setWeightCol(value: String): GeneralizedLinearRegression.this.typeSets the value of param weightCol. Sets the value of param weightCol. If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one. In the Binomial family, weights correspond to number of trials and should be integer. Non-integer weights are rounded to integer in AIC calculation. - Annotations
- @Since("2.0.0")
 
-   final  val solver: Param[String]The solver algorithm for optimization. The solver algorithm for optimization. Supported options: "irls" (iteratively reweighted least squares). Default: "irls" - Definition Classes
- GeneralizedLinearRegressionBase → HasSolver
- Annotations
- @Since("2.0.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- Identifiable → AnyRef → Any
 
-   final  val tol: DoubleParamParam for the convergence tolerance for iterative algorithms (>= 0). Param for the convergence tolerance for iterative algorithms (>= 0). - Definition Classes
- HasTol
 
-    def train(dataset: Dataset[_]): GeneralizedLinearRegressionModelTrain a model using the given dataset and parameters. Train a model using the given dataset and parameters. Developers can implement this instead of fit()to avoid dealing with schema validation and copying parameters into the model.- dataset
- Training dataset 
- returns
- Fitted model 
 - Attributes
- protected
- Definition Classes
- GeneralizedLinearRegression → Predictor
 
-    def transformSchema(schema: StructType): StructTypeCheck transform validity and derive the output schema from the input schema. Check transform validity and derive the output schema from the input schema. We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Definition Classes
- Predictor → PipelineStage
 
-    def transformSchema(schema: StructType, logging: Boolean): StructType:: DeveloperApi :: :: DeveloperApi :: Derives the output schema from the input schema and parameters, optionally with logging. This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise. - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
-    val uid: StringAn immutable unique ID for the object and its derivatives. An immutable unique ID for the object and its derivatives. - Definition Classes
- GeneralizedLinearRegression → Identifiable
- Annotations
- @Since("2.0.0")
 
-    def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructTypeValidates and transforms the input schema with the provided param map. Validates and transforms the input schema with the provided param map. - schema
- input schema 
- fitting
- whether this is in fitting 
- featuresDataType
- SQL DataType for FeaturesType. E.g., - VectorUDTfor vector features.
- returns
- output schema 
 - Definition Classes
- GeneralizedLinearRegressionBase → PredictorParams
- Annotations
- @Since("2.0.0")
 
-   final  val variancePower: DoubleParamParam for the power in the variance function of the Tweedie distribution which provides the relationship between the variance and mean of the distribution. Param for the power in the variance function of the Tweedie distribution which provides the relationship between the variance and mean of the distribution. Only applicable to the Tweedie family. (see Tweedie Distribution (Wikipedia)) Supported values: 0 and [1, Inf). Note that variance power 0, 1, or 2 corresponds to the Gaussian, Poisson or Gamma family, respectively. - Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since("2.2.0")
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  val weightCol: Param[String]Param for weight column name. Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0. - Definition Classes
- HasWeightCol
 
-    def withLogContext(context: Map[String, String])(body: => Unit): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def write: MLWriterReturns an MLWriterinstance for this ML instance.Returns an MLWriterinstance for this ML instance.- Definition Classes
- DefaultParamsWritable → MLWritable
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9) 
 
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from GeneralizedLinearRegressionBase
Inherited from HasAggregationDepth
Inherited from HasSolver
Inherited from HasWeightCol
Inherited from HasRegParam
Inherited from HasTol
Inherited from HasMaxIter
Inherited from HasFitIntercept
Inherited from Regressor[Vector, GeneralizedLinearRegression, GeneralizedLinearRegressionModel]
Inherited from Predictor[Vector, GeneralizedLinearRegression, GeneralizedLinearRegressionModel]
Inherited from PredictorParams
Inherited from HasPredictionCol
Inherited from HasFeaturesCol
Inherited from HasLabelCol
Inherited from Estimator[GeneralizedLinearRegressionModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.