class RandomForestRegressor extends Regressor[Vector, RandomForestRegressor, RandomForestRegressionModel] with RandomForestRegressorParams with DefaultParamsWritable
Random Forest learning algorithm for regression. It supports both continuous and categorical features.
- Annotations
- @Since("1.4.0")
- Source
- RandomForestRegressor.scala
- Grouped
- Alphabetic
- By Inheritance
- RandomForestRegressor
- DefaultParamsWritable
- MLWritable
- RandomForestRegressorParams
- TreeRegressorParams
- HasVarianceImpurity
- TreeEnsembleRegressorParams
- RandomForestParams
- TreeEnsembleParams
- DecisionTreeParams
- HasWeightCol
- HasSeed
- HasCheckpointInterval
- Regressor
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
-   implicit  class LogStringContext extends AnyRef- Definition Classes
- Logging
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def $[T](param: Param[T]): TAn alias for getOrDefault().An alias for getOrDefault().- Attributes
- protected
- Definition Classes
- Params
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-    def MDC(key: LogKey, value: Any): MDC- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-   final  val bootstrap: BooleanParamWhether bootstrap samples are used when building trees. Whether bootstrap samples are used when building trees. - Definition Classes
- RandomForestParams
- Annotations
- @Since("3.0.0")
 
-   final  val cacheNodeIds: BooleanParamIf false, the algorithm will pass trees to executors to match instances with nodes. If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval. (default = false) - Definition Classes
- DecisionTreeParams
 
-   final  val checkpointInterval: IntParamParam for set checkpoint interval (>= 1) or disable checkpoint (-1). Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext. - Definition Classes
- HasCheckpointInterval
 
-   final  def clear(param: Param[_]): RandomForestRegressor.this.typeClears the user-supplied value for the input param. Clears the user-supplied value for the input param. - Definition Classes
- Params
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def copy(extra: ParamMap): RandomForestRegressorCreates a copy of this instance with the same UID and some extra params. Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().- Definition Classes
- RandomForestRegressor → Predictor → Estimator → PipelineStage → Params
- Annotations
- @Since("1.4.0")
 
-    def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): TCopies param values from this instance to another instance for params shared by them. Copies param values from this instance to another instance for params shared by them. This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and toparamMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
- the target instance, which should work with the same set of default Params as this source instance 
- extra
- extra params to be copied to the target's - paramMap
- returns
- the target instance with param values copied 
 - Attributes
- protected
- Definition Classes
- Params
 
-   final  def defaultCopy[T <: Params](extra: ParamMap): TDefault implementation of copy with extra params. Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance. - Attributes
- protected
- Definition Classes
- Params
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    def explainParam(param: Param[_]): StringExplains a param. Explains a param. - param
- input param, must belong to this instance. 
- returns
- a string that contains the input param name, doc, and optionally its default value and the user-supplied value 
 - Definition Classes
- Params
 
-    def explainParams(): StringExplains all params of this instance. Explains all params of this instance. See explainParam().- Definition Classes
- Params
 
-   final  def extractParamMap(): ParamMapextractParamMapwith no extra values.extractParamMapwith no extra values.- Definition Classes
- Params
 
-   final  def extractParamMap(extra: ParamMap): ParamMapExtracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. - Definition Classes
- Params
 
-   final  val featureSubsetStrategy: Param[String]The number of features to consider for splits at each tree node. The number of features to consider for splits at each tree node. Supported options: - "auto": Choose automatically for task: If numTrees == 1, set to "all." If numTrees greater than 1 (forest), set to "sqrt" for classification and to "onethird" for regression.
- "all": use all features
- "onethird": use 1/3 of the features
- "sqrt": use sqrt(number of features)
- "log2": use log2(number of features)
- "n": when n is in the range (0, 1.0], use n * number of features. When n is in the range (1, number of features), use n features. (default = "auto")
 These various settings are based on the following references: - log2: tested in Breiman (2001)
- sqrt: recommended by Breiman manual for random forests
- The defaults of sqrt (classification) and onethird (regression) match the R randomForest package.
 - Definition Classes
- TreeEnsembleParams
- See also
 
-   final  val featuresCol: Param[String]Param for features column name. Param for features column name. - Definition Classes
- HasFeaturesCol
 
-    def fit(dataset: Dataset[_]): RandomForestRegressionModelFits a model to the input data. 
-    def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[RandomForestRegressionModel]Fits multiple models to the input data with multiple sets of parameters. Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training. - dataset
- input dataset 
- paramMaps
- An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted models, matching the input parameter maps 
 - Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
 
-    def fit(dataset: Dataset[_], paramMap: ParamMap): RandomForestRegressionModelFits a single model to the input data with provided parameter map. Fits a single model to the input data with provided parameter map. - dataset
- input dataset 
- paramMap
- Parameter map. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted model 
 - Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
 
-    def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): RandomForestRegressionModelFits a single model to the input data with optional parameters. Fits a single model to the input data with optional parameters. - dataset
- input dataset 
- firstParamPair
- the first param pair, overrides embedded params 
- otherParamPairs
- other param pairs. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted model 
 - Definition Classes
- Estimator
- Annotations
- @Since("2.0.0") @varargs()
 
-   final  def get[T](param: Param[T]): Option[T]Optionally returns the user-supplied value of a param. Optionally returns the user-supplied value of a param. - Definition Classes
- Params
 
-   final  def getBootstrap: Boolean- Definition Classes
- RandomForestParams
- Annotations
- @Since("3.0.0")
 
-   final  def getCacheNodeIds: Boolean- Definition Classes
- DecisionTreeParams
 
-   final  def getCheckpointInterval: Int- Definition Classes
- HasCheckpointInterval
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def getDefault[T](param: Param[T]): Option[T]Gets the default value of a parameter. Gets the default value of a parameter. - Definition Classes
- Params
 
-   final  def getFeatureSubsetStrategy: String- Definition Classes
- TreeEnsembleParams
 
-   final  def getFeaturesCol: String- Definition Classes
- HasFeaturesCol
 
-   final  def getImpurity: String- Definition Classes
- HasVarianceImpurity
 
-   final  def getLabelCol: String- Definition Classes
- HasLabelCol
 
-   final  def getLeafCol: String- Definition Classes
- DecisionTreeParams
- Annotations
- @Since("3.0.0")
 
-   final  def getMaxBins: Int- Definition Classes
- DecisionTreeParams
 
-   final  def getMaxDepth: Int- Definition Classes
- DecisionTreeParams
 
-   final  def getMaxMemoryInMB: Int- Definition Classes
- DecisionTreeParams
 
-   final  def getMinInfoGain: Double- Definition Classes
- DecisionTreeParams
 
-   final  def getMinInstancesPerNode: Int- Definition Classes
- DecisionTreeParams
 
-   final  def getMinWeightFractionPerNode: Double- Definition Classes
- DecisionTreeParams
 
-   final  def getNumTrees: Int- Definition Classes
- RandomForestParams
 
-   final  def getOrDefault[T](param: Param[T]): TGets the value of a param in the embedded param map or its default value. Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set. - Definition Classes
- Params
 
-    def getParam(paramName: String): Param[Any]Gets a param by its name. Gets a param by its name. - Definition Classes
- Params
 
-   final  def getPredictionCol: String- Definition Classes
- HasPredictionCol
 
-   final  def getSeed: Long- Definition Classes
- HasSeed
 
-   final  def getSubsamplingRate: Double- Definition Classes
- TreeEnsembleParams
 
-   final  def getWeightCol: String- Definition Classes
- HasWeightCol
 
-   final  def hasDefault[T](param: Param[T]): BooleanTests whether the input param has a default value set. Tests whether the input param has a default value set. - Definition Classes
- Params
 
-    def hasParam(paramName: String): BooleanTests whether this instance contains a param with a given name. Tests whether this instance contains a param with a given name. - Definition Classes
- Params
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  val impurity: Param[String]Criterion used for information gain calculation (case-insensitive). Criterion used for information gain calculation (case-insensitive). This impurity type is used in DecisionTreeRegressor, RandomForestRegressor, GBTRegressor and GBTClassifier (since GBTClassificationModel is internally composed of DecisionTreeRegressionModels). Supported: "variance". (default = variance) - Definition Classes
- HasVarianceImpurity
 
-    def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def initializeLogIfNecessary(isInterpreter: Boolean): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def isDefined(param: Param[_]): BooleanChecks whether a param is explicitly set or has a default value. Checks whether a param is explicitly set or has a default value. - Definition Classes
- Params
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def isSet(param: Param[_]): BooleanChecks whether a param is explicitly set. Checks whether a param is explicitly set. - Definition Classes
- Params
 
-    def isTraceEnabled(): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-   final  val labelCol: Param[String]Param for label column name. Param for label column name. - Definition Classes
- HasLabelCol
 
-   final  val leafCol: Param[String]Leaf indices column name. Leaf indices column name. Predicted leaf index of each instance in each tree by preorder. (default = "") - Definition Classes
- DecisionTreeParams
- Annotations
- @Since("3.0.0")
 
-    def log: Logger- Attributes
- protected
- Definition Classes
- Logging
 
-    def logBasedOnLevel(level: Level)(f: => MessageWithContext): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logName: String- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  val maxBins: IntParamMaximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity. Must be at least 2 and at least number of categories in any categorical feature. (default = 32) - Definition Classes
- DecisionTreeParams
 
-   final  val maxDepth: IntParamMaximum depth of the tree (nonnegative). Maximum depth of the tree (nonnegative). E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. (default = 5) - Definition Classes
- DecisionTreeParams
 
-   final  val maxMemoryInMB: IntParamMaximum memory in MB allocated to histogram aggregation. Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size. (default = 256 MB) - Definition Classes
- DecisionTreeParams
 
-   final  val minInfoGain: DoubleParamMinimum information gain for a split to be considered at a tree node. Minimum information gain for a split to be considered at a tree node. Should be at least 0.0. (default = 0.0) - Definition Classes
- DecisionTreeParams
 
-   final  val minInstancesPerNode: IntParamMinimum number of instances each child must have after split. Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Must be at least 1. (default = 1) - Definition Classes
- DecisionTreeParams
 
-   final  val minWeightFractionPerNode: DoubleParamMinimum fraction of the weighted sample count that each child must have after split. Minimum fraction of the weighted sample count that each child must have after split. If a split causes the fraction of the total weight in the left or right child to be less than minWeightFractionPerNode, the split will be discarded as invalid. Should be in the interval [0.0, 0.5). (default = 0.0) - Definition Classes
- DecisionTreeParams
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  val numTrees: IntParamNumber of trees to train (at least 1). Number of trees to train (at least 1). If 1, then no bootstrapping is used. If greater than 1, then bootstrapping is done. TODO: Change to always do bootstrapping (simpler). SPARK-7130 (default = 20) Note: The reason that we cannot add this to both GBT and RF (i.e. in TreeEnsembleParams) is the param maxItercontrols how many trees a GBT has. The semantics in the algorithms are a bit different.- Definition Classes
- RandomForestParams
 
-    lazy val params: Array[Param[_]]Returns all params sorted by their names. Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param. - Definition Classes
- Params
- Note
- Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params. 
 
-   final  val predictionCol: Param[String]Param for prediction column name. Param for prediction column name. - Definition Classes
- HasPredictionCol
 
-    def save(path: String): UnitSaves this ML instance to the input path, a shortcut of write.save(path).Saves this ML instance to the input path, a shortcut of write.save(path).- Definition Classes
- MLWritable
- Annotations
- @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
 
-   final  val seed: LongParamParam for random seed. Param for random seed. - Definition Classes
- HasSeed
 
-   final  def set(paramPair: ParamPair[_]): RandomForestRegressor.this.typeSets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
-   final  def set(param: String, value: Any): RandomForestRegressor.this.typeSets a parameter (by name) in the embedded param map. Sets a parameter (by name) in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
-   final  def set[T](param: Param[T], value: T): RandomForestRegressor.this.typeSets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Definition Classes
- Params
 
-    def setBootstrap(value: Boolean): RandomForestRegressor.this.type- Annotations
- @Since("3.0.0")
 
-    def setCacheNodeIds(value: Boolean): RandomForestRegressor.this.type- Annotations
- @Since("1.4.0")
 
-    def setCheckpointInterval(value: Int): RandomForestRegressor.this.typeSpecifies how often to checkpoint the cached node IDs. Specifies how often to checkpoint the cached node IDs. E.g. 10 means that the cache will get checkpointed every 10 iterations. This is only used if cacheNodeIds is true and if the checkpoint directory is set in org.apache.spark.SparkContext. Must be at least 1. (default = 10) - Annotations
- @Since("1.4.0")
 
-   final  def setDefault(paramPairs: ParamPair[_]*): RandomForestRegressor.this.typeSets default values for a list of params. Sets default values for a list of params. Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
- a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called. 
 - Attributes
- protected
- Definition Classes
- Params
 
-   final  def setDefault[T](param: Param[T], value: T): RandomForestRegressor.this.typeSets a default value for a param. 
-    def setFeatureSubsetStrategy(value: String): RandomForestRegressor.this.type- Annotations
- @Since("1.4.0")
 
-    def setFeaturesCol(value: String): RandomForestRegressor- Definition Classes
- Predictor
 
-    def setImpurity(value: String): RandomForestRegressor.this.type- Annotations
- @Since("1.4.0")
 
-    def setLabelCol(value: String): RandomForestRegressor- Definition Classes
- Predictor
 
-   final  def setLeafCol(value: String): RandomForestRegressor.this.type- Definition Classes
- DecisionTreeParams
- Annotations
- @Since("3.0.0")
 
-    def setMaxBins(value: Int): RandomForestRegressor.this.type- Annotations
- @Since("1.4.0")
 
-    def setMaxDepth(value: Int): RandomForestRegressor.this.type- Annotations
- @Since("1.4.0")
 
-    def setMaxMemoryInMB(value: Int): RandomForestRegressor.this.type- Annotations
- @Since("1.4.0")
 
-    def setMinInfoGain(value: Double): RandomForestRegressor.this.type- Annotations
- @Since("1.4.0")
 
-    def setMinInstancesPerNode(value: Int): RandomForestRegressor.this.type- Annotations
- @Since("1.4.0")
 
-    def setMinWeightFractionPerNode(value: Double): RandomForestRegressor.this.type- Annotations
- @Since("3.0.0")
 
-    def setNumTrees(value: Int): RandomForestRegressor.this.type- Annotations
- @Since("1.4.0")
 
-    def setPredictionCol(value: String): RandomForestRegressor- Definition Classes
- Predictor
 
-    def setSeed(value: Long): RandomForestRegressor.this.type- Annotations
- @Since("1.4.0")
 
-    def setSubsamplingRate(value: Double): RandomForestRegressor.this.type- Annotations
- @Since("1.4.0")
 
-    def setWeightCol(value: String): RandomForestRegressor.this.typeSets the value of param weightCol. Sets the value of param weightCol. If this is not set or empty, we treat all instance weights as 1.0. By default the weightCol is not set, so all instances have weight 1.0. - Annotations
- @Since("3.0.0")
 
-   final  val subsamplingRate: DoubleParamFraction of the training data used for learning each decision tree, in range (0, 1]. Fraction of the training data used for learning each decision tree, in range (0, 1]. (default = 1.0) - Definition Classes
- TreeEnsembleParams
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- Identifiable → AnyRef → Any
 
-    def train(dataset: Dataset[_]): RandomForestRegressionModelTrain a model using the given dataset and parameters. Train a model using the given dataset and parameters. Developers can implement this instead of fit()to avoid dealing with schema validation and copying parameters into the model.- dataset
- Training dataset 
- returns
- Fitted model 
 - Attributes
- protected
- Definition Classes
- RandomForestRegressor → Predictor
 
-    def transformSchema(schema: StructType): StructTypeCheck transform validity and derive the output schema from the input schema. Check transform validity and derive the output schema from the input schema. We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Definition Classes
- Predictor → PipelineStage
 
-    def transformSchema(schema: StructType, logging: Boolean): StructType:: DeveloperApi :: :: DeveloperApi :: Derives the output schema from the input schema and parameters, optionally with logging. This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise. - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
-    val uid: StringAn immutable unique ID for the object and its derivatives. An immutable unique ID for the object and its derivatives. - Definition Classes
- RandomForestRegressor → Identifiable
- Annotations
- @Since("1.4.0")
 
-    def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructTypeValidates and transforms the input schema with the provided param map. Validates and transforms the input schema with the provided param map. - schema
- input schema 
- fitting
- whether this is in fitting 
- featuresDataType
- SQL DataType for FeaturesType. E.g., - VectorUDTfor vector features.
- returns
- output schema 
 - Attributes
- protected
- Definition Classes
- TreeEnsembleRegressorParams → PredictorParams
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  val weightCol: Param[String]Param for weight column name. Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0. - Definition Classes
- HasWeightCol
 
-    def withLogContext(context: Map[String, String])(body: => Unit): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def write: MLWriterReturns an MLWriterinstance for this ML instance.Returns an MLWriterinstance for this ML instance.- Definition Classes
- DefaultParamsWritable → MLWritable
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9) 
 
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from RandomForestRegressorParams
Inherited from TreeRegressorParams
Inherited from HasVarianceImpurity
Inherited from TreeEnsembleRegressorParams
Inherited from RandomForestParams
Inherited from TreeEnsembleParams
Inherited from DecisionTreeParams
Inherited from HasWeightCol
Inherited from HasSeed
Inherited from HasCheckpointInterval
Inherited from Regressor[Vector, RandomForestRegressor, RandomForestRegressionModel]
Inherited from Predictor[Vector, RandomForestRegressor, RandomForestRegressionModel]
Inherited from PredictorParams
Inherited from HasPredictionCol
Inherited from HasFeaturesCol
Inherited from HasLabelCol
Inherited from Estimator[RandomForestRegressionModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.