class LinearRegressionSummary extends Summary with Serializable
Linear regression results evaluated on a dataset.
- Annotations
- @Since("1.5.0")
- Source
- LinearRegression.scala
- Alphabetic
- By Inheritance
- LinearRegressionSummary
- Serializable
- Summary
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    lazy val coefficientStandardErrors: Array[Double]Standard error of estimated coefficients and intercept. Standard error of estimated coefficients and intercept. This value is only available when using the "normal" solver. If LinearRegression.fitInterceptis set to true, then the last element returned corresponds to the intercept.- See also
- LinearRegression.solver
 
-    val degreesOfFreedom: LongDegrees of freedom Degrees of freedom - Annotations
- @Since("2.2.0")
 
-    lazy val devianceResiduals: Array[Double]The weighted residuals, the usual residuals rescaled by the square root of the instance weights. 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    val explainedVariance: DoubleReturns the explained variance regression score. Returns the explained variance regression score. explainedVariance = 1 - variance(y - \hat{y}) / variance(y) Reference: Wikipedia explain variation - Annotations
- @Since("1.5.0")
 
-  val featuresCol: String
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-  val labelCol: String
-    val meanAbsoluteError: DoubleReturns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss. Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss. - Annotations
- @Since("1.5.0")
 
-    val meanSquaredError: DoubleReturns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss. Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss. - Annotations
- @Since("1.5.0")
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    lazy val numInstances: LongNumber of instances in DataFrame predictions 
-    lazy val pValues: Array[Double]Two-sided p-value of estimated coefficients and intercept. Two-sided p-value of estimated coefficients and intercept. This value is only available when using the "normal" solver. If LinearRegression.fitInterceptis set to true, then the last element returned corresponds to the intercept.- See also
- LinearRegression.solver
 
-  val predictionCol: String
-  val predictions: DataFrame
-    val r2: DoubleReturns R2, the coefficient of determination. Returns R2, the coefficient of determination. Reference: Wikipedia coefficient of determination - Annotations
- @Since("1.5.0")
 
-    val r2adj: DoubleReturns Adjusted R2, the adjusted coefficient of determination. Returns Adjusted R2, the adjusted coefficient of determination. Reference: Wikipedia coefficient of determination - Annotations
- @Since("2.3.0")
 
-    lazy val residuals: DataFrameResiduals (label - predicted value) Residuals (label - predicted value) - Annotations
- @Since("1.5.0") @transient()
 
-    val rootMeanSquaredError: DoubleReturns the root mean squared error, which is defined as the square root of the mean squared error. Returns the root mean squared error, which is defined as the square root of the mean squared error. - Annotations
- @Since("1.5.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    lazy val tValues: Array[Double]T-statistic of estimated coefficients and intercept. T-statistic of estimated coefficients and intercept. This value is only available when using the "normal" solver. If LinearRegression.fitInterceptis set to true, then the last element returned corresponds to the intercept.- See also
- LinearRegression.solver
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)