class GeneralizedLinearRegressionSummary extends Summary with Serializable
Summary of GeneralizedLinearRegression model and predictions.
- Annotations
- @Since("2.0.0")
- Source
- GeneralizedLinearRegression.scala
- Alphabetic
- By Inheritance
- GeneralizedLinearRegressionSummary
- Serializable
- Summary
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-    lazy val aic: DoubleAkaike Information Criterion (AIC) for the fitted model. Akaike Information Criterion (AIC) for the fitted model. - Annotations
- @Since("2.0.0")
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    lazy val degreesOfFreedom: LongDegrees of freedom. Degrees of freedom. - Annotations
- @Since("2.0.0")
 
-    lazy val deviance: DoubleThe deviance for the fitted model. The deviance for the fitted model. - Annotations
- @Since("2.0.0")
 
-    lazy val dispersion: DoubleThe dispersion of the fitted model. The dispersion of the fitted model. It is taken as 1.0 for the "binomial" and "poisson" families, and otherwise estimated by the residual Pearson's Chi-Squared statistic (which is defined as sum of the squares of the Pearson residuals) divided by the residual degrees of freedom. - Annotations
- @Since("2.0.0")
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    val model: GeneralizedLinearRegressionModelPrivate copy of model to ensure Params are not modified outside this class. Private copy of model to ensure Params are not modified outside this class. Coefficients is not a deep copy, but that is acceptable. - Attributes
- protected
- Note
- predictionCol must be set correctly before the value of model is set, and model must be set before predictions is set! 
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    lazy val nullDeviance: DoubleThe deviance for the null model. The deviance for the null model. - Annotations
- @Since("2.0.0")
 
-    lazy val numInstances: LongNumber of instances in DataFrame predictions. Number of instances in DataFrame predictions. - Annotations
- @Since("2.2.0")
 
-    val predictionCol: StringField in "predictions" which gives the predicted value of each instance. Field in "predictions" which gives the predicted value of each instance. This is set to a new column name if the original model's predictionColis not set.- Annotations
- @Since("2.0.0")
 
-    val predictions: DataFramePredictions output by the model's transformmethod.Predictions output by the model's transformmethod.- Annotations
- @Since("2.0.0")
 
-    lazy val rank: LongThe numeric rank of the fitted linear model. The numeric rank of the fitted linear model. - Annotations
- @Since("2.0.0")
 
-    lazy val residualDegreeOfFreedom: LongThe residual degrees of freedom. The residual degrees of freedom. - Annotations
- @Since("2.0.0")
 
-    lazy val residualDegreeOfFreedomNull: LongThe residual degrees of freedom for the null model. The residual degrees of freedom for the null model. - Annotations
- @Since("2.0.0")
 
-    def residuals(residualsType: String): DataFrameGet the residuals of the fitted model by type. Get the residuals of the fitted model by type. - residualsType
- The type of residuals which should be returned. Supported options: deviance, pearson, working and response. 
 - Annotations
- @Since("2.0.0")
 
-    def residuals(): DataFrameGet the default residuals (deviance residuals) of the fitted model. Get the default residuals (deviance residuals) of the fitted model. - Annotations
- @Since("2.0.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)