class LinearRegressionTrainingSummary extends LinearRegressionSummary
Linear regression training results. Currently, the training summary ignores the training weights except for the objective trace.
- Annotations
- @Since("1.5.0")
- Source
- LinearRegression.scala
- Alphabetic
- By Inheritance
- LinearRegressionTrainingSummary
- LinearRegressionSummary
- Serializable
- Summary
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    lazy val coefficientStandardErrors: Array[Double]Standard error of estimated coefficients and intercept. Standard error of estimated coefficients and intercept. This value is only available when using the "normal" solver. If LinearRegression.fitInterceptis set to true, then the last element returned corresponds to the intercept.- Definition Classes
- LinearRegressionSummary
- See also
- LinearRegression.solver
 
-    val degreesOfFreedom: LongDegrees of freedom Degrees of freedom - Definition Classes
- LinearRegressionSummary
- Annotations
- @Since("2.2.0")
 
-    lazy val devianceResiduals: Array[Double]The weighted residuals, the usual residuals rescaled by the square root of the instance weights. The weighted residuals, the usual residuals rescaled by the square root of the instance weights. - Definition Classes
- LinearRegressionSummary
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    val explainedVariance: DoubleReturns the explained variance regression score. Returns the explained variance regression score. explainedVariance = 1 - variance(y - \hat{y}) / variance(y) Reference: Wikipedia explain variation - Definition Classes
- LinearRegressionSummary
- Annotations
- @Since("1.5.0")
 
-    val featuresCol: String- Definition Classes
- LinearRegressionSummary
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    val labelCol: String- Definition Classes
- LinearRegressionSummary
 
-    val meanAbsoluteError: DoubleReturns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss. Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss. - Definition Classes
- LinearRegressionSummary
- Annotations
- @Since("1.5.0")
 
-    val meanSquaredError: DoubleReturns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss. Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss. - Definition Classes
- LinearRegressionSummary
- Annotations
- @Since("1.5.0")
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    lazy val numInstances: LongNumber of instances in DataFrame predictions Number of instances in DataFrame predictions - Definition Classes
- LinearRegressionSummary
 
-  val objectiveHistory: Array[Double]
-    lazy val pValues: Array[Double]Two-sided p-value of estimated coefficients and intercept. Two-sided p-value of estimated coefficients and intercept. This value is only available when using the "normal" solver. If LinearRegression.fitInterceptis set to true, then the last element returned corresponds to the intercept.- Definition Classes
- LinearRegressionSummary
- See also
- LinearRegression.solver
 
-    val predictionCol: String- Definition Classes
- LinearRegressionSummary
 
-    val predictions: DataFrame- Definition Classes
- LinearRegressionSummary
 
-    val r2: DoubleReturns R2, the coefficient of determination. Returns R2, the coefficient of determination. Reference: Wikipedia coefficient of determination - Definition Classes
- LinearRegressionSummary
- Annotations
- @Since("1.5.0")
 
-    val r2adj: DoubleReturns Adjusted R2, the adjusted coefficient of determination. Returns Adjusted R2, the adjusted coefficient of determination. Reference: Wikipedia coefficient of determination - Definition Classes
- LinearRegressionSummary
- Annotations
- @Since("2.3.0")
 
-    lazy val residuals: DataFrameResiduals (label - predicted value) Residuals (label - predicted value) - Definition Classes
- LinearRegressionSummary
- Annotations
- @Since("1.5.0") @transient()
 
-    val rootMeanSquaredError: DoubleReturns the root mean squared error, which is defined as the square root of the mean squared error. Returns the root mean squared error, which is defined as the square root of the mean squared error. - Definition Classes
- LinearRegressionSummary
- Annotations
- @Since("1.5.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    lazy val tValues: Array[Double]T-statistic of estimated coefficients and intercept. T-statistic of estimated coefficients and intercept. This value is only available when using the "normal" solver. If LinearRegression.fitInterceptis set to true, then the last element returned corresponds to the intercept.- Definition Classes
- LinearRegressionSummary
- See also
- LinearRegression.solver
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    val totalIterations: IntNumber of training iterations until termination Number of training iterations until termination This value is only available when using the "l-bfgs" solver. - Annotations
- @Since("1.5.0")
- See also
- LinearRegression.solver
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)