Packages

class LinearSVCModel extends ClassificationModel[Vector, LinearSVCModel] with LinearSVCParams with MLWritable with HasTrainingSummary[LinearSVCTrainingSummary]

Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. LinearSVCModel
  2. HasTrainingSummary
  3. MLWritable
  4. LinearSVCParams
  5. HasMaxBlockSizeInMB
  6. HasThreshold
  7. HasAggregationDepth
  8. HasWeightCol
  9. HasStandardization
  10. HasTol
  11. HasFitIntercept
  12. HasMaxIter
  13. HasRegParam
  14. ClassificationModel
  15. ClassifierParams
  16. HasRawPredictionCol
  17. PredictionModel
  18. PredictorParams
  19. HasPredictionCol
  20. HasFeaturesCol
  21. HasLabelCol
  22. Model
  23. Transformer
  24. PipelineStage
  25. Logging
  26. Params
  27. Serializable
  28. Serializable
  29. Identifiable
  30. AnyRef
  31. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  2. final val fitIntercept: BooleanParam

    Param for whether to fit an intercept term.

    Param for whether to fit an intercept term.

    Definition Classes
    HasFitIntercept
  3. final val labelCol: Param[String]

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  4. final val maxIter: IntParam

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  5. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  6. final val rawPredictionCol: Param[String]

    Param for raw prediction (a.k.a.

    Param for raw prediction (a.k.a. confidence) column name.

    Definition Classes
    HasRawPredictionCol
  7. final val regParam: DoubleParam

    Param for regularization parameter (>= 0).

    Param for regularization parameter (>= 0).

    Definition Classes
    HasRegParam
  8. final val standardization: BooleanParam

    Param for whether to standardize the training features before fitting the model.

    Param for whether to standardize the training features before fitting the model.

    Definition Classes
    HasStandardization
  9. final val threshold: DoubleParam

    Param for threshold in binary classification prediction.

    Param for threshold in binary classification prediction. For LinearSVC, this threshold is applied to the rawPrediction, rather than a probability. This threshold can be any real number, where Inf will make all predictions 0.0 and -Inf will make all predictions 1.0. Default: 0.0

    Definition Classes
    LinearSVCParams → HasThreshold
  10. final val tol: DoubleParam

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Definition Classes
    HasTol
  11. final val weightCol: Param[String]

    Param for weight column name.

    Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.

    Definition Classes
    HasWeightCol

Members

  1. final def clear(param: Param[_]): LinearSVCModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  2. val coefficients: Vector
    Annotations
    @Since( "2.2.0" )
  3. def copy(extra: ParamMap): LinearSVCModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    LinearSVCModelModelTransformerPipelineStageParams
    Annotations
    @Since( "2.2.0" )
  4. def evaluate(dataset: Dataset[_]): LinearSVCSummary

    Evaluates the model on a test dataset.

    Evaluates the model on a test dataset.

    dataset

    Test dataset to evaluate model on.

    Annotations
    @Since( "3.1.0" )
  5. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  6. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  7. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  8. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  9. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  10. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  11. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  12. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  13. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  14. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  15. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  16. def hasSummary: Boolean

    Indicates whether a training summary exists for this model instance.

    Indicates whether a training summary exists for this model instance.

    Definition Classes
    HasTrainingSummary
    Annotations
    @Since( "3.0.0" )
  17. val intercept: Double
    Annotations
    @Since( "2.2.0" )
  18. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  19. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  20. val numClasses: Int

    Number of classes (values which the label can take).

    Number of classes (values which the label can take).

    Definition Classes
    LinearSVCModelClassificationModel
    Annotations
    @Since( "2.2.0" )
  21. val numFeatures: Int

    Returns the number of features the model was trained on.

    Returns the number of features the model was trained on. If unknown, returns -1

    Definition Classes
    LinearSVCModelPredictionModel
    Annotations
    @Since( "2.2.0" )
  22. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  23. var parent: Estimator[LinearSVCModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  24. def predict(features: Vector): Double

    Predict label for the given features.

    Predict label for the given features. This method is used to implement transform() and output predictionCol.

    This default implementation for classification predicts the index of the maximum value from predictRaw().

    Definition Classes
    LinearSVCModelClassificationModelPredictionModel
  25. def predictRaw(features: Vector): Vector

    Raw prediction for each possible label.

    Raw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implement transform() and output rawPredictionCol.

    returns

    vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.

    Definition Classes
    LinearSVCModelClassificationModel
    Annotations
    @Since( "3.0.0" )
  26. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  27. final def set[T](param: Param[T], value: T): LinearSVCModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  28. def setParent(parent: Estimator[LinearSVCModel]): LinearSVCModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  29. def setThreshold(value: Double): LinearSVCModel.this.type
    Annotations
    @Since( "2.2.0" )
  30. def summary: LinearSVCTrainingSummary

    Gets summary of model on training set.

    Gets summary of model on training set. An exception is thrown if hasSummary is false.

    Definition Classes
    LinearSVCModel → HasTrainingSummary
    Annotations
    @Since( "3.1.0" )
  31. def toString(): String
    Definition Classes
    LinearSVCModelIdentifiable → AnyRef → Any
    Annotations
    @Since( "3.0.0" )
  32. def transform(dataset: Dataset[_]): DataFrame

    Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:

    Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:

    dataset

    input dataset

    returns

    transformed dataset

    Definition Classes
    ClassificationModelPredictionModelTransformer
  33. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  34. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  35. final def transformImpl(dataset: Dataset[_]): DataFrame
    Definition Classes
    ClassificationModelPredictionModel
  36. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    ClassificationModelPredictionModelPipelineStage
  37. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    LinearSVCModelIdentifiable
    Annotations
    @Since( "2.2.0" )
  38. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    LinearSVCModelMLWritable
    Annotations
    @Since( "2.2.0" )

Parameter setters

  1. def setFeaturesCol(value: String): LinearSVCModel

    Definition Classes
    PredictionModel
  2. def setPredictionCol(value: String): LinearSVCModel

    Definition Classes
    PredictionModel
  3. def setRawPredictionCol(value: String): LinearSVCModel

    Definition Classes
    ClassificationModel

Parameter getters

  1. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  2. final def getFitIntercept: Boolean

    Definition Classes
    HasFitIntercept
  3. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  4. final def getMaxIter: Int

    Definition Classes
    HasMaxIter
  5. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  6. final def getRawPredictionCol: String

    Definition Classes
    HasRawPredictionCol
  7. final def getRegParam: Double

    Definition Classes
    HasRegParam
  8. final def getStandardization: Boolean

    Definition Classes
    HasStandardization
  9. def getThreshold: Double

    Definition Classes
    HasThreshold
  10. final def getTol: Double

    Definition Classes
    HasTol
  11. final def getWeightCol: String

    Definition Classes
    HasWeightCol

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val aggregationDepth: IntParam

    Param for suggested depth for treeAggregate (>= 2).

    Param for suggested depth for treeAggregate (>= 2).

    Definition Classes
    HasAggregationDepth
  2. final val maxBlockSizeInMB: DoubleParam

    Param for Maximum memory in MB for stacking input data into blocks.

    Param for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0..

    Definition Classes
    HasMaxBlockSizeInMB

(expert-only) Parameter getters

  1. final def getAggregationDepth: Int

    Definition Classes
    HasAggregationDepth
  2. final def getMaxBlockSizeInMB: Double

    Definition Classes
    HasMaxBlockSizeInMB