MLlib is Apache Spark's scalable machine learning library.

Ease of Use

Usable in Java, Scala, Python, and R.

MLlib fits into Spark's APIs and interoperates with NumPy in Python (as of Spark 0.9) and R libraries (as of Spark 1.5). You can use any Hadoop data source (e.g. HDFS, HBase, or local files), making it easy to plug into Hadoop workflows.

data ="libsvm")\

model = KMeans(data, k=10)
Calling MLlib in Python


High-quality algorithms, 100x faster than MapReduce.

Spark excels at iterative computation, enabling MLlib to run fast. At the same time, we care about algorithmic performance: MLlib contains high-quality algorithms that leverage iteration, and can yield better results than the one-pass approximations sometimes used on MapReduce.

Logistic regression in Hadoop and Spark

Easy to Deploy

Runs on existing Hadoop clusters and data.

If you have a Hadoop 2 cluster, you can run Spark and MLlib without any pre-installation. Otherwise, Spark is easy to run standalone or on EC2 or Mesos. You can read from HDFS, HBase, or any Hadoop data source.


MLlib contains many algorithms and utilities, including:

  • Classification: logistic regression, naive Bayes,...
  • Regression: generalized linear regression, isotonic regression,...
  • Decision trees, random forests, and gradient-boosted trees
  • Recommendation: alternating least squares (ALS)
  • Clustering: K-means, Gaussian mixtures (GMMs),...
  • Topic modeling: latent Dirichlet allocation (LDA)
  • Feature transformations: standardization, normalization, hashing,...
  • Model evaluation and hyper-parameter tuning
  • ML Pipeline construction
  • ML persistence: saving and loading models and Pipelines
  • Survival analysis: accelerated failure time model
  • Frequent itemset and sequential pattern mining: FP-growth, association rules, PrefixSpan
  • Distributed linear algebra: singular value decomposition (SVD), principal component analysis (PCA),...
  • Statistics: summary statistics, hypothesis testing,...

Refer to the MLlib guide for usage examples.


MLlib is developed as part of the Apache Spark project. It thus gets tested and updated with each Spark release.

If you have questions about the library, ask on the Spark mailing lists.

MLlib is still a rapidly growing project and welcomes contributions. If you'd like to submit an algorithm to MLlib, read how to contribute to Spark and send us a patch!

Getting Started

To get started with MLlib:

  • Download Spark. MLlib is included as a module.
  • Read the MLlib guide, which includes various usage examples.
  • Learn how to deploy Spark on a cluster if you'd like to run in distributed mode. You can also run locally on a multicore machine without any setup.