LinearSVCModel¶
-
class
pyspark.ml.classification.
LinearSVCModel
(java_model: Optional[JavaObject] = None)[source]¶ Model fitted by LinearSVC.
New in version 2.2.0.
Methods
clear
(param)Clears a param from the param map if it has been explicitly set.
copy
([extra])Creates a copy of this instance with the same uid and some extra params.
evaluate
(dataset)Evaluates the model on a test dataset.
explainParam
(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap
([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Gets the value of aggregationDepth or its default value.
Gets the value of featuresCol or its default value.
Gets the value of fitIntercept or its default value.
Gets the value of labelCol or its default value.
Gets the value of maxBlockSizeInMB or its default value.
Gets the value of maxIter or its default value.
getOrDefault
(param)Gets the value of a param in the user-supplied param map or its default value.
getParam
(paramName)Gets a param by its name.
Gets the value of predictionCol or its default value.
Gets the value of rawPredictionCol or its default value.
Gets the value of regParam or its default value.
Gets the value of standardization or its default value.
Gets the value of threshold or its default value.
getTol
()Gets the value of tol or its default value.
Gets the value of weightCol or its default value.
hasDefault
(param)Checks whether a param has a default value.
hasParam
(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined
(param)Checks whether a param is explicitly set by user or has a default value.
isSet
(param)Checks whether a param is explicitly set by user.
load
(path)Reads an ML instance from the input path, a shortcut of read().load(path).
predict
(value)Predict label for the given features.
predictRaw
(value)Raw prediction for each possible label.
read
()Returns an MLReader instance for this class.
save
(path)Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set
(param, value)Sets a parameter in the embedded param map.
setFeaturesCol
(value)Sets the value of
featuresCol
.setPredictionCol
(value)Sets the value of
predictionCol
.setRawPredictionCol
(value)Sets the value of
rawPredictionCol
.setThreshold
(value)Sets the value of
threshold
.summary
()Gets summary (accuracy/precision/recall, objective history, total iterations) of model trained on the training set.
transform
(dataset[, params])Transforms the input dataset with optional parameters.
write
()Returns an MLWriter instance for this ML instance.
Attributes
Model coefficients of Linear SVM Classifier.
Indicates whether a training summary exists for this model instance.
Model intercept of Linear SVM Classifier.
Number of classes (values which the label can take).
Returns the number of features the model was trained on.
Returns all params ordered by name.
Methods Documentation
-
clear
(param: pyspark.ml.param.Param) → None¶ Clears a param from the param map if it has been explicitly set.
-
copy
(extra: Optional[ParamMap] = None) → JP¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
- extradict, optional
Extra parameters to copy to the new instance
- Returns
JavaParams
Copy of this instance
-
evaluate
(dataset: pyspark.sql.dataframe.DataFrame) → pyspark.ml.classification.LinearSVCSummary[source]¶ Evaluates the model on a test dataset.
New in version 3.1.0.
- Parameters
- dataset
pyspark.sql.DataFrame
Test dataset to evaluate model on.
- dataset
-
explainParam
(param: Union[str, pyspark.ml.param.Param]) → str¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
-
explainParams
() → str¶ Returns the documentation of all params with their optionally default values and user-supplied values.
-
extractParamMap
(extra: Optional[ParamMap] = None) → ParamMap¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
-
getAggregationDepth
() → int¶ Gets the value of aggregationDepth or its default value.
-
getFeaturesCol
() → str¶ Gets the value of featuresCol or its default value.
-
getFitIntercept
() → bool¶ Gets the value of fitIntercept or its default value.
-
getLabelCol
() → str¶ Gets the value of labelCol or its default value.
-
getMaxBlockSizeInMB
() → float¶ Gets the value of maxBlockSizeInMB or its default value.
-
getMaxIter
() → int¶ Gets the value of maxIter or its default value.
-
getOrDefault
(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
-
getParam
(paramName: str) → pyspark.ml.param.Param¶ Gets a param by its name.
-
getPredictionCol
() → str¶ Gets the value of predictionCol or its default value.
-
getRawPredictionCol
() → str¶ Gets the value of rawPredictionCol or its default value.
-
getRegParam
() → float¶ Gets the value of regParam or its default value.
-
getStandardization
() → bool¶ Gets the value of standardization or its default value.
-
getThreshold
() → float¶ Gets the value of threshold or its default value.
-
getTol
() → float¶ Gets the value of tol or its default value.
-
getWeightCol
() → str¶ Gets the value of weightCol or its default value.
-
hasDefault
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param has a default value.
-
hasParam
(paramName: str) → bool¶ Tests whether this instance contains a param with a given (string) name.
-
isDefined
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user or has a default value.
-
isSet
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user.
-
classmethod
load
(path: str) → RL¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
predict
(value: T) → float¶ Predict label for the given features.
New in version 3.0.0.
-
predictRaw
(value: pyspark.ml.linalg.Vector) → pyspark.ml.linalg.Vector¶ Raw prediction for each possible label.
New in version 3.0.0.
-
classmethod
read
() → pyspark.ml.util.JavaMLReader[RL]¶ Returns an MLReader instance for this class.
-
save
(path: str) → None¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
-
set
(param: pyspark.ml.param.Param, value: Any) → None¶ Sets a parameter in the embedded param map.
-
setFeaturesCol
(value: str) → P¶ Sets the value of
featuresCol
.New in version 3.0.0.
-
setPredictionCol
(value: str) → P¶ Sets the value of
predictionCol
.New in version 3.0.0.
-
setRawPredictionCol
(value: str) → P¶ Sets the value of
rawPredictionCol
.New in version 3.0.0.
-
setThreshold
(value: float) → pyspark.ml.classification.LinearSVCModel[source]¶ Sets the value of
threshold
.New in version 3.0.0.
-
summary
() → pyspark.ml.classification.LinearSVCTrainingSummary[source]¶ Gets summary (accuracy/precision/recall, objective history, total iterations) of model trained on the training set. An exception is thrown if trainingSummary is None.
New in version 3.1.0.
-
transform
(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame¶ Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters
- dataset
pyspark.sql.DataFrame
input dataset
- paramsdict, optional
an optional param map that overrides embedded params.
- dataset
- Returns
pyspark.sql.DataFrame
transformed dataset
-
write
() → pyspark.ml.util.JavaMLWriter¶ Returns an MLWriter instance for this ML instance.
Attributes Documentation
-
aggregationDepth
= Param(parent='undefined', name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).')¶
-
coefficients
¶ Model coefficients of Linear SVM Classifier.
New in version 2.2.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fitIntercept
= Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')¶
-
hasSummary
¶ Indicates whether a training summary exists for this model instance.
New in version 2.1.0.
-
intercept
¶ Model intercept of Linear SVM Classifier.
New in version 2.2.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
maxBlockSizeInMB
= Param(parent='undefined', name='maxBlockSizeInMB', doc='maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0.')¶
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
numClasses
¶ Number of classes (values which the label can take).
New in version 2.1.0.
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
rawPredictionCol
= Param(parent='undefined', name='rawPredictionCol', doc='raw prediction (a.k.a. confidence) column name.')¶
-
regParam
= Param(parent='undefined', name='regParam', doc='regularization parameter (>= 0).')¶
-
standardization
= Param(parent='undefined', name='standardization', doc='whether to standardize the training features before fitting the model.')¶
-
threshold
: pyspark.ml.param.Param[float] = Param(parent='undefined', name='threshold', doc='The threshold in binary classification applied to the linear model prediction. This threshold can be any real number, where Inf will make all predictions 0.0 and -Inf will make all predictions 1.0.')¶
-
tol
= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
-
weightCol
= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
-