GaussianMixtureModel¶
- 
class pyspark.ml.clustering.GaussianMixtureModel(java_model: Optional[JavaObject] = None)[source]¶
- Model fitted by GaussianMixture. - New in version 2.0.0. - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Gets the value of aggregationDepth or its default value. - Gets the value of featuresCol or its default value. - getK()- Gets the value of k - Gets the value of maxIter or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of predictionCol or its default value. - Gets the value of probabilityCol or its default value. - getSeed()- Gets the value of seed or its default value. - getTol()- Gets the value of tol or its default value. - Gets the value of weightCol or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - predict(value)- Predict label for the given features. - predictProbability(value)- Predict probability for the given features. - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setFeaturesCol(value)- Sets the value of - featuresCol.- setPredictionCol(value)- Sets the value of - predictionCol.- setProbabilityCol(value)- Sets the value of - probabilityCol.- transform(dataset[, params])- Transforms the input dataset with optional parameters. - write()- Returns an MLWriter instance for this ML instance. - Attributes - Array of - MultivariateGaussianwhere gaussians[i] represents the Multivariate Gaussian (Normal) Distribution for Gaussian i- Retrieve Gaussian distributions as a DataFrame. - Indicates whether a training summary exists for this model instance. - Returns all params ordered by name. - Gets summary (cluster assignments, cluster sizes) of the model trained on the training set. - Weight for each Gaussian distribution in the mixture. - Methods Documentation - 
clear(param: pyspark.ml.param.Param) → None¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra: Optional[ParamMap] = None) → JP¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams() → str¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
getAggregationDepth() → int¶
- Gets the value of aggregationDepth or its default value. 
 - 
getFeaturesCol() → str¶
- Gets the value of featuresCol or its default value. 
 - 
getK() → int¶
- Gets the value of k - New in version 2.0.0. 
 - 
getMaxIter() → int¶
- Gets the value of maxIter or its default value. 
 - 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getParam(paramName: str) → pyspark.ml.param.Param¶
- Gets a param by its name. 
 - 
getPredictionCol() → str¶
- Gets the value of predictionCol or its default value. 
 - 
getProbabilityCol() → str¶
- Gets the value of probabilityCol or its default value. 
 - 
getSeed() → int¶
- Gets the value of seed or its default value. 
 - 
getTol() → float¶
- Gets the value of tol or its default value. 
 - 
getWeightCol() → str¶
- Gets the value of weightCol or its default value. 
 - 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName: str) → bool¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path: str) → RL¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
predict(value: pyspark.ml.linalg.Vector) → int[source]¶
- Predict label for the given features. - New in version 3.0.0. 
 - 
predictProbability(value: pyspark.ml.linalg.Vector) → pyspark.ml.linalg.Vector[source]¶
- Predict probability for the given features. - New in version 3.0.0. 
 - 
classmethod read() → pyspark.ml.util.JavaMLReader[RL]¶
- Returns an MLReader instance for this class. 
 - 
save(path: str) → None¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param: pyspark.ml.param.Param, value: Any) → None¶
- Sets a parameter in the embedded param map. 
 - 
setFeaturesCol(value: str) → pyspark.ml.clustering.GaussianMixtureModel[source]¶
- Sets the value of - featuresCol.- New in version 3.0.0. 
 - 
setPredictionCol(value: str) → pyspark.ml.clustering.GaussianMixtureModel[source]¶
- Sets the value of - predictionCol.- New in version 3.0.0. 
 - 
setProbabilityCol(value: str) → pyspark.ml.clustering.GaussianMixtureModel[source]¶
- Sets the value of - probabilityCol.- New in version 3.0.0. 
 - 
transform(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame¶
- Transforms the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset 
- paramsdict, optional
- an optional param map that overrides embedded params. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- transformed dataset 
 
 
 - 
write() → pyspark.ml.util.JavaMLWriter¶
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - 
aggregationDepth= Param(parent='undefined', name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).')¶
 - 
featuresCol= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
 - 
gaussians¶
- Array of - MultivariateGaussianwhere gaussians[i] represents the Multivariate Gaussian (Normal) Distribution for Gaussian i- New in version 3.0.0. 
 - 
gaussiansDF¶
- Retrieve Gaussian distributions as a DataFrame. Each row represents a Gaussian Distribution. The DataFrame has two columns: mean (Vector) and cov (Matrix). - New in version 2.0.0. 
 - 
hasSummary¶
- Indicates whether a training summary exists for this model instance. - New in version 2.1.0. 
 - 
k: pyspark.ml.param.Param[int] = Param(parent='undefined', name='k', doc='Number of independent Gaussians in the mixture model. Must be > 1.')¶
 - 
maxIter= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - 
predictionCol= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
 - 
probabilityCol= Param(parent='undefined', name='probabilityCol', doc='Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.')¶
 - 
seed= Param(parent='undefined', name='seed', doc='random seed.')¶
 - 
summary¶
- Gets summary (cluster assignments, cluster sizes) of the model trained on the training set. An exception is thrown if no summary exists. - New in version 2.1.0. 
 - 
tol= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
 - 
weightCol= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
 - 
weights¶
- Weight for each Gaussian distribution in the mixture. This is a multinomial probability distribution over the k Gaussians, where weights[i] is the weight for Gaussian i, and weights sum to 1. - New in version 2.0.0. 
 
-