pyspark.pandas.groupby.GroupBy.cumcount¶
- 
GroupBy.cumcount(ascending: bool = True) → pyspark.pandas.series.Series[source]¶
- Number each item in each group from 0 to the length of that group - 1. - Essentially this is equivalent to - self.apply(lambda x: pd.Series(np.arange(len(x)), x.index)) - Parameters
- ascendingbool, default True
- If False, number in reverse, from length of group - 1 to 0. 
 
- Returns
- Series
- Sequence number of each element within each group. 
 
 - Examples - >>> df = ps.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], ... columns=['A']) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').cumcount().sort_index() 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 >>> df.groupby('A').cumcount(ascending=False).sort_index() 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64