ElementwiseProduct¶
- 
class pyspark.mllib.feature.ElementwiseProduct(scalingVector: pyspark.mllib.linalg.Vector)[source]¶
- Scales each column of the vector, with the supplied weight vector. i.e the elementwise product. - New in version 1.5.0. - Examples - >>> weight = Vectors.dense([1.0, 2.0, 3.0]) >>> eprod = ElementwiseProduct(weight) >>> a = Vectors.dense([2.0, 1.0, 3.0]) >>> eprod.transform(a) DenseVector([2.0, 2.0, 9.0]) >>> b = Vectors.dense([9.0, 3.0, 4.0]) >>> rdd = sc.parallelize([a, b]) >>> eprod.transform(rdd).collect() [DenseVector([2.0, 2.0, 9.0]), DenseVector([9.0, 6.0, 12.0])] - Methods - transform(vector)- Computes the Hadamard product of the vector. - Methods Documentation - 
transform(vector: Union[VectorLike, pyspark.rdd.RDD[VectorLike]]) → Union[pyspark.mllib.linalg.Vector, pyspark.rdd.RDD[pyspark.mllib.linalg.Vector]][source]¶
- Computes the Hadamard product of the vector. - New in version 1.5.0. 
 
-