pyspark.pandas.DataFrame.itertuples¶
-
DataFrame.
itertuples
(index: bool = True, name: Optional[str] = 'PandasOnSpark') → Iterator[Tuple][source]¶ Iterate over DataFrame rows as namedtuples.
- Parameters
- indexbool, default True
If True, return the index as the first element of the tuple.
- namestr or None, default “PandasOnSpark”
The name of the returned namedtuples or None to return regular tuples.
- Returns
- iterator
An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values.
See also
DataFrame.iterrows
Iterate over DataFrame rows as (index, Series) pairs.
DataFrame.items
Iterate over (column name, Series) pairs.
Notes
The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore.
Examples
>>> df = ps.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2
>>> for row in df.itertuples(): ... print(row) ... PandasOnSpark(Index='dog', num_legs=4, num_wings=0) PandasOnSpark(Index='hawk', num_legs=2, num_wings=2)
By setting the index parameter to False we can remove the index as the first element of the tuple:
>>> for row in df.itertuples(index=False): ... print(row) ... PandasOnSpark(num_legs=4, num_wings=0) PandasOnSpark(num_legs=2, num_wings=2)
With the name parameter set we set a custom name for the yielded namedtuples:
>>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2)