pyspark.pandas.DataFrame.take¶
- 
DataFrame.take(indices: List[int], axis: Union[int, str] = 0, **kwargs: Any) → pyspark.pandas.frame.DataFrame[source]¶
- Return the elements in the given positional indices along an axis. - This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object. - Parameters
- indicesarray-like
- An array of ints indicating which positions to take. 
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
- The axis on which to select elements. - 0means that we are selecting rows,- 1means that we are selecting columns.
- **kwargs
- For compatibility with - numpy.take(). Has no effect on the output.
 
- Returns
- takensame type as caller
- An array-like containing the elements taken from the object. 
 
 - See also - DataFrame.loc
- Select a subset of a DataFrame by labels. 
- DataFrame.iloc
- Select a subset of a DataFrame by positions. 
- numpy.take
- Take elements from an array along an axis. 
 - Examples - >>> df = ps.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=['name', 'class', 'max_speed'], ... index=[0, 2, 3, 1]) >>> df name class max_speed 0 falcon bird 389.0 2 parrot bird 24.0 3 lion mammal 80.5 1 monkey mammal NaN - Take elements at positions 0 and 3 along the axis 0 (default). - Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That’s because we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3. - >>> df.take([0, 3]).sort_index() name class max_speed 0 falcon bird 389.0 1 monkey mammal NaN - Take elements at indices 1 and 2 along the axis 1 (column selection). - >>> df.take([1, 2], axis=1) class max_speed 0 bird 389.0 2 bird 24.0 3 mammal 80.5 1 mammal NaN - We may take elements using negative integers for positive indices, starting from the end of the object, just like with Python lists. - >>> df.take([-1, -2]).sort_index() name class max_speed 1 monkey mammal NaN 3 lion mammal 80.5