Packages

class RFormula extends Estimator[RFormulaModel] with RFormulaBase with DefaultParamsWritable

Implements the transforms required for fitting a dataset against an R model formula. Currently we support a limited subset of the R operators, including '~', '.', ':', '+', '-', '*' and '^'. Also see the R formula docs here: http://stat.ethz.ch/R-manual/R-patched/library/stats/html/formula.html

The basic operators are:

  • ~ separate target and terms
  • + concat terms, "+ 0" means removing intercept
  • - remove a term, "- 1" means removing intercept
  • : interaction (multiplication for numeric values, or binarized categorical values)
  • . all columns except target
  • * factor crossing, includes the terms and interactions between them
  • ^ factor crossing to a specified degree

Suppose a and b are double columns, we use the following simple examples to illustrate the effect of RFormula:

  • y ~ a + b means model y ~ w0 + w1 * a + w2 * b where w0 is the intercept and w1, w2 are coefficients.
  • y ~ a + b + a:b - 1 means model y ~ w1 * a + w2 * b + w3 * a * b where w1, w2, w3 are coefficients.
  • y ~ a * b means model y ~ w0 + w1 * a + w2 * b + w3 * a * b where w0 is the intercept and w1, w2, w3 are coefficients
  • y ~ (a + b)^2 means model y ~ w0 + w1 * a + w2 * b + w3 * a * b where w0 is the intercept and w1, w2, w3 are coefficients

RFormula produces a vector column of features and a double or string column of label. Like when formulas are used in R for linear regression, string input columns will be one-hot encoded, and numeric columns will be cast to doubles. If the label column is of type string, it will be first transformed to double with StringIndexer. If the label column does not exist in the DataFrame, the output label column will be created from the specified response variable in the formula.

Annotations
@Since( "1.5.0" )
Source
RFormula.scala
Linear Supertypes
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. RFormula
  2. DefaultParamsWritable
  3. MLWritable
  4. RFormulaBase
  5. HasHandleInvalid
  6. HasLabelCol
  7. HasFeaturesCol
  8. Estimator
  9. PipelineStage
  10. Logging
  11. Params
  12. Serializable
  13. Serializable
  14. Identifiable
  15. AnyRef
  16. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  2. val forceIndexLabel: BooleanParam

    Force to index label whether it is numeric or string type.

    Force to index label whether it is numeric or string type. Usually we index label only when it is string type. If the formula was used by classification algorithms, we can force to index label even it is numeric type by setting this param with true. Default: false.

    Definition Classes
    RFormulaBase
    Annotations
    @Since( "2.1.0" )
  3. val formula: Param[String]

    R formula parameter.

    R formula parameter. The formula is provided in string form.

    Definition Classes
    RFormulaBase
    Annotations
    @Since( "1.5.0" )
  4. val handleInvalid: Param[String]

    Param for how to handle invalid data (unseen or NULL values) in features and label column of string type.

    Param for how to handle invalid data (unseen or NULL values) in features and label column of string type. Options are 'skip' (filter out rows with invalid data), 'error' (throw an error), or 'keep' (put invalid data in a special additional bucket, at index numLabels). Default: "error"

    Definition Classes
    RFormulaBase → HasHandleInvalid
    Annotations
    @Since( "2.3.0" )
  5. final val labelCol: Param[String]

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  6. final val stringIndexerOrderType: Param[String]

    Param for how to order categories of a string FEATURE column used by StringIndexer.

    Param for how to order categories of a string FEATURE column used by StringIndexer. The last category after ordering is dropped when encoding strings. Supported options: 'frequencyDesc', 'frequencyAsc', 'alphabetDesc', 'alphabetAsc'. The default value is 'frequencyDesc'. When the ordering is set to 'alphabetDesc', RFormula drops the same category as R when encoding strings.

    The options are explained using an example 'b', 'a', 'b', 'a', 'c', 'b':

    +-----------------+---------------------------------------+----------------------------------+
    |      Option     | Category mapped to 0 by StringIndexer |  Category dropped by RFormula    |
    +-----------------+---------------------------------------+----------------------------------+
    | 'frequencyDesc' | most frequent category ('b')          | least frequent category ('c')    |
    | 'frequencyAsc'  | least frequent category ('c')         | most frequent category ('b')     |
    | 'alphabetDesc'  | last alphabetical category ('c')      | first alphabetical category ('a')|
    | 'alphabetAsc'   | first alphabetical category ('a')     | last alphabetical category ('c') |
    +-----------------+---------------------------------------+----------------------------------+

    Note that this ordering option is NOT used for the label column. When the label column is indexed, it uses the default descending frequency ordering in StringIndexer.

    Definition Classes
    RFormulaBase
    Annotations
    @Since( "2.3.0" )

Members

  1. final def clear(param: Param[_]): RFormula.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  2. def copy(extra: ParamMap): RFormula

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    RFormulaEstimatorPipelineStageParams
    Annotations
    @Since( "1.5.0" )
  3. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  4. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  5. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  6. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  7. def fit(dataset: Dataset[_]): RFormulaModel

    Fits a model to the input data.

    Fits a model to the input data.

    Definition Classes
    RFormulaEstimator
    Annotations
    @Since( "2.0.0" )
  8. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[RFormulaModel]

    Fits multiple models to the input data with multiple sets of parameters.

    Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.

    dataset

    input dataset

    paramMaps

    An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted models, matching the input parameter maps

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  9. def fit(dataset: Dataset[_], paramMap: ParamMap): RFormulaModel

    Fits a single model to the input data with provided parameter map.

    Fits a single model to the input data with provided parameter map.

    dataset

    input dataset

    paramMap

    Parameter map. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  10. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): RFormulaModel

    Fits a single model to the input data with optional parameters.

    Fits a single model to the input data with optional parameters.

    dataset

    input dataset

    firstParamPair

    the first param pair, overrides embedded params

    otherParamPairs

    other param pairs. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  11. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  12. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  13. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  14. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  15. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  16. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  17. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  18. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  19. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  20. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  21. final def set[T](param: Param[T], value: T): RFormula.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  22. def toString(): String
    Definition Classes
    RFormulaIdentifiable → AnyRef → Any
    Annotations
    @Since( "2.0.0" )
  23. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    RFormulaPipelineStage
    Annotations
    @Since( "1.5.0" )
  24. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    RFormulaIdentifiable
    Annotations
    @Since( "1.5.0" )
  25. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    DefaultParamsWritableMLWritable

Parameter setters

  1. def setFeaturesCol(value: String): RFormula.this.type

    Annotations
    @Since( "1.5.0" )
  2. def setForceIndexLabel(value: Boolean): RFormula.this.type

    Annotations
    @Since( "2.1.0" )
  3. def setFormula(value: String): RFormula.this.type

    Sets the formula to use for this transformer.

    Sets the formula to use for this transformer. Must be called before use.

    value

    an R formula in string form (e.g. "y ~ x + z")

    Annotations
    @Since( "1.5.0" )
  4. def setHandleInvalid(value: String): RFormula.this.type

    Annotations
    @Since( "2.3.0" )
  5. def setLabelCol(value: String): RFormula.this.type

    Annotations
    @Since( "1.5.0" )
  6. def setStringIndexerOrderType(value: String): RFormula.this.type

    Annotations
    @Since( "2.3.0" )

Parameter getters

  1. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  2. def getForceIndexLabel: Boolean

    Definition Classes
    RFormulaBase
    Annotations
    @Since( "2.1.0" )
  3. def getFormula: String

    Definition Classes
    RFormulaBase
    Annotations
    @Since( "1.5.0" )
  4. final def getHandleInvalid: String

    Definition Classes
    HasHandleInvalid
  5. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  6. def getStringIndexerOrderType: String

    Definition Classes
    RFormulaBase
    Annotations
    @Since( "2.3.0" )