Packages

class RobustScalerModel extends Model[RobustScalerModel] with RobustScalerParams with MLWritable

Model fitted by RobustScaler.

Annotations
@Since( "3.0.0" )
Source
RobustScaler.scala
Linear Supertypes
MLWritable, RobustScalerParams, HasRelativeError, HasOutputCol, HasInputCol, Model[RobustScalerModel], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. RobustScalerModel
  2. MLWritable
  3. RobustScalerParams
  4. HasRelativeError
  5. HasOutputCol
  6. HasInputCol
  7. Model
  8. Transformer
  9. PipelineStage
  10. Logging
  11. Params
  12. Serializable
  13. Serializable
  14. Identifiable
  15. AnyRef
  16. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val inputCol: Param[String]

    Param for input column name.

    Param for input column name.

    Definition Classes
    HasInputCol
  2. val lower: DoubleParam

    Lower quantile to calculate quantile range, shared by all features Default: 0.25

    Lower quantile to calculate quantile range, shared by all features Default: 0.25

    Definition Classes
    RobustScalerParams
  3. final val outputCol: Param[String]

    Param for output column name.

    Param for output column name.

    Definition Classes
    HasOutputCol
  4. val upper: DoubleParam

    Upper quantile to calculate quantile range, shared by all features Default: 0.75

    Upper quantile to calculate quantile range, shared by all features Default: 0.75

    Definition Classes
    RobustScalerParams
  5. val withCentering: BooleanParam

    Whether to center the data with median before scaling.

    Whether to center the data with median before scaling. It will build a dense output, so take care when applying to sparse input. Default: false

    Definition Classes
    RobustScalerParams
  6. val withScaling: BooleanParam

    Whether to scale the data to quantile range.

    Whether to scale the data to quantile range. Default: true

    Definition Classes
    RobustScalerParams

Members

  1. final def clear(param: Param[_]): RobustScalerModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  2. def copy(extra: ParamMap): RobustScalerModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    RobustScalerModelModelTransformerPipelineStageParams
  3. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  4. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  5. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  6. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  7. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  8. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  9. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  10. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  11. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  12. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  13. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  14. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  15. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  16. val median: Vector
    Annotations
    @Since( "3.0.0" )
  17. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  18. var parent: Estimator[RobustScalerModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  19. val range: Vector
    Annotations
    @Since( "3.0.0" )
  20. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  21. final def set[T](param: Param[T], value: T): RobustScalerModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  22. def setParent(parent: Estimator[RobustScalerModel]): RobustScalerModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  23. def toString(): String
    Definition Classes
    RobustScalerModelIdentifiable → AnyRef → Any
    Annotations
    @Since( "3.0.0" )
  24. def transform(dataset: Dataset[_]): DataFrame

    Transforms the input dataset.

    Transforms the input dataset.

    Definition Classes
    RobustScalerModelTransformer
  25. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  26. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  27. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    RobustScalerModelPipelineStage
  28. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    RobustScalerModelIdentifiable
    Annotations
    @Since( "3.0.0" )
  29. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    RobustScalerModelMLWritable

Parameter setters

  1. def setInputCol(value: String): RobustScalerModel.this.type

  2. def setOutputCol(value: String): RobustScalerModel.this.type

Parameter getters

  1. final def getInputCol: String

    Definition Classes
    HasInputCol
  2. def getLower: Double

    Definition Classes
    RobustScalerParams
  3. final def getOutputCol: String

    Definition Classes
    HasOutputCol
  4. def getUpper: Double

    Definition Classes
    RobustScalerParams
  5. def getWithCentering: Boolean

    Definition Classes
    RobustScalerParams
  6. def getWithScaling: Boolean

    Definition Classes
    RobustScalerParams

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val relativeError: DoubleParam

    Param for the relative target precision for the approximate quantile algorithm.

    Param for the relative target precision for the approximate quantile algorithm. Must be in the range [0, 1].

    Definition Classes
    HasRelativeError

(expert-only) Parameter getters

  1. final def getRelativeError: Double

    Definition Classes
    HasRelativeError