Packages

class Word2VecModel extends Model[Word2VecModel] with Word2VecBase with MLWritable

Model fitted by Word2Vec.

Annotations
@Since( "1.4.0" )
Source
Word2Vec.scala
Linear Supertypes
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. Word2VecModel
  2. MLWritable
  3. Word2VecBase
  4. HasSeed
  5. HasStepSize
  6. HasMaxIter
  7. HasOutputCol
  8. HasInputCol
  9. Model
  10. Transformer
  11. PipelineStage
  12. Logging
  13. Params
  14. Serializable
  15. Serializable
  16. Identifiable
  17. AnyRef
  18. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val inputCol: Param[String]

    Param for input column name.

    Param for input column name.

    Definition Classes
    HasInputCol
  2. final val maxIter: IntParam

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  3. final val maxSentenceLength: IntParam

    Sets the maximum length (in words) of each sentence in the input data.

    Sets the maximum length (in words) of each sentence in the input data. Any sentence longer than this threshold will be divided into chunks of up to maxSentenceLength size. Default: 1000

    Definition Classes
    Word2VecBase
  4. final val minCount: IntParam

    The minimum number of times a token must appear to be included in the word2vec model's vocabulary.

    The minimum number of times a token must appear to be included in the word2vec model's vocabulary. Default: 5

    Definition Classes
    Word2VecBase
  5. final val numPartitions: IntParam

    Number of partitions for sentences of words.

    Number of partitions for sentences of words. Default: 1

    Definition Classes
    Word2VecBase
  6. final val outputCol: Param[String]

    Param for output column name.

    Param for output column name.

    Definition Classes
    HasOutputCol
  7. final val seed: LongParam

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  8. val stepSize: DoubleParam

    Param for Step size to be used for each iteration of optimization (> 0).

    Param for Step size to be used for each iteration of optimization (> 0).

    Definition Classes
    HasStepSize
  9. final val vectorSize: IntParam

    The dimension of the code that you want to transform from words.

    The dimension of the code that you want to transform from words. Default: 100

    Definition Classes
    Word2VecBase

Members

  1. final def clear(param: Param[_]): Word2VecModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  2. def copy(extra: ParamMap): Word2VecModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    Word2VecModelModelTransformerPipelineStageParams
    Annotations
    @Since( "1.4.1" )
  3. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  4. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  5. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  6. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  7. def findSynonyms(vec: Vector, num: Int): DataFrame

    Find "num" number of words whose vector representation is most similar to the supplied vector.

    Find "num" number of words whose vector representation is most similar to the supplied vector. If the supplied vector is the vector representation of a word in the model's vocabulary, that word will be in the results.

    returns

    a dataframe with columns "word" and "similarity" of the word and the cosine similarities between the synonyms and the given word vector.

    Annotations
    @Since( "2.0.0" )
  8. def findSynonyms(word: String, num: Int): DataFrame

    Find "num" number of words closest in similarity to the given word, not including the word itself.

    Find "num" number of words closest in similarity to the given word, not including the word itself.

    returns

    a dataframe with columns "word" and "similarity" of the word and the cosine similarities between the synonyms and the given word.

    Annotations
    @Since( "1.5.0" )
  9. def findSynonymsArray(word: String, num: Int): Array[(String, Double)]

    Find "num" number of words closest in similarity to the given word, not including the word itself.

    Find "num" number of words closest in similarity to the given word, not including the word itself.

    returns

    an array of the words and the cosine similarities between the synonyms given word vector.

    Annotations
    @Since( "2.2.0" )
  10. def findSynonymsArray(vec: Vector, num: Int): Array[(String, Double)]

    Find "num" number of words whose vector representation is most similar to the supplied vector.

    Find "num" number of words whose vector representation is most similar to the supplied vector. If the supplied vector is the vector representation of a word in the model's vocabulary, that word will be in the results.

    returns

    an array of the words and the cosine similarities between the synonyms given word vector.

    Annotations
    @Since( "2.2.0" )
  11. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  12. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  13. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  14. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  15. lazy val getVectors: DataFrame

    Returns a dataframe with two fields, "word" and "vector", with "word" being a String and and the vector the DenseVector that it is mapped to.

    Returns a dataframe with two fields, "word" and "vector", with "word" being a String and and the vector the DenseVector that it is mapped to.

    Annotations
    @Since( "1.5.0" ) @transient()
  16. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  17. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  18. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  19. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  20. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  21. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  22. var parent: Estimator[Word2VecModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  23. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  24. final def set[T](param: Param[T], value: T): Word2VecModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  25. def setParent(parent: Estimator[Word2VecModel]): Word2VecModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  26. def toString(): String
    Definition Classes
    Word2VecModelIdentifiable → AnyRef → Any
    Annotations
    @Since( "3.0.0" )
  27. def transform(dataset: Dataset[_]): DataFrame

    Transform a sentence column to a vector column to represent the whole sentence.

    Transform a sentence column to a vector column to represent the whole sentence. The transform is performed by averaging all word vectors it contains.

    Definition Classes
    Word2VecModelTransformer
    Annotations
    @Since( "2.0.0" )
  28. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  29. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  30. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    Word2VecModelPipelineStage
    Annotations
    @Since( "1.4.0" )
  31. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    Word2VecModelIdentifiable
    Annotations
    @Since( "1.4.0" )
  32. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    Word2VecModelMLWritable
    Annotations
    @Since( "1.6.0" )

Parameter setters

  1. def setInputCol(value: String): Word2VecModel.this.type

    Annotations
    @Since( "1.4.0" )
  2. def setOutputCol(value: String): Word2VecModel.this.type

    Annotations
    @Since( "1.4.0" )

Parameter getters

  1. final def getInputCol: String

    Definition Classes
    HasInputCol
  2. final def getMaxIter: Int

    Definition Classes
    HasMaxIter
  3. def getMaxSentenceLength: Int

    Definition Classes
    Word2VecBase
  4. def getMinCount: Int

    Definition Classes
    Word2VecBase
  5. def getNumPartitions: Int

    Definition Classes
    Word2VecBase
  6. final def getOutputCol: String

    Definition Classes
    HasOutputCol
  7. final def getSeed: Long

    Definition Classes
    HasSeed
  8. final def getStepSize: Double

    Definition Classes
    HasStepSize
  9. def getVectorSize: Int

    Definition Classes
    Word2VecBase

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val windowSize: IntParam

    The window size (context words from [-window, window]).

    The window size (context words from [-window, window]). Default: 5

    Definition Classes
    Word2VecBase

(expert-only) Parameter getters

  1. def getWindowSize: Int

    Definition Classes
    Word2VecBase