pyspark.pandas.Series.dt.floor#
- dt.floor(freq, *args, **kwargs)#
- Perform floor operation on the data to the specified freq. - Parameters
- freqstr or Offset
- The frequency level to floor the index to. Must be a fixed frequency like ‘S’ (second) not ‘ME’ (month end). 
- nonexistent‘shift_forward’, ‘shift_backward, ‘NaT’, timedelta, default ‘raise’
- A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - ‘shift_forward’ will shift the nonexistent time forward to the closest existing time 
- ‘shift_backward’ will shift the nonexistent time backward to the closest existing time 
- ‘NaT’ will return NaT where there are nonexistent times 
- timedelta objects will shift nonexistent times by the timedelta 
- ‘raise’ will raise an NonExistentTimeError if there are nonexistent times 
 - Note - this option only works with pandas 0.24.0+ 
 
- Returns
- Series
- a Series with the same index for a Series. 
 
- Raises
- ValueError if the freq cannot be converted.
 
 - Examples - >>> series = ps.Series(pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')) >>> series 0 2018-01-01 11:59:00 1 2018-01-01 12:00:00 2 2018-01-01 12:01:00 dtype: datetime64[ns] - >>> series.dt.floor("H") 0 2018-01-01 11:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns]