FPGrowthModel#
- class pyspark.mllib.fpm.FPGrowthModel(java_model)[source]#
- A FP-Growth model for mining frequent itemsets using the Parallel FP-Growth algorithm. - New in version 1.4.0. - Examples - >>> data = [["a", "b", "c"], ["a", "b", "d", "e"], ["a", "c", "e"], ["a", "c", "f"]] >>> rdd = sc.parallelize(data, 2) >>> model = FPGrowth.train(rdd, 0.6, 2) >>> sorted(model.freqItemsets().collect()) [FreqItemset(items=['a'], freq=4), FreqItemset(items=['c'], freq=3), ... >>> model_path = temp_path + "/fpm" >>> model.save(sc, model_path) >>> sameModel = FPGrowthModel.load(sc, model_path) >>> sorted(model.freqItemsets().collect()) == sorted(sameModel.freqItemsets().collect()) True - Methods - call(name, *a)- Call method of java_model - Returns the frequent itemsets of this model. - load(sc, path)- Load a model from the given path. - save(sc, path)- Save this model to the given path. - Methods Documentation - call(name, *a)#
- Call method of java_model 
 - save(sc, path)#
- Save this model to the given path. - New in version 1.3.0.